Frente de onda para velocidad lineal con la profundidad
![]() | |
Series | Geophysical References Series |
---|---|
Title | Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing |
Author | Enders A. Robinson and Sven Treitel |
Chapter | 2 |
DOI | http://dx.doi.org/10.1190/1.9781560801610 |
ISBN | 9781560801481 |
Store | SEG Online Store |
Our next task is to use the eikonal equation to find the wavefronts. The eikonal equation tells us that the wavefronts are orthogonal to the raypaths. We will use this orthogonal property to construct a wavefront (Figure 14). To this end, it is advantageous to make a one-to-one relationship between raypaths and wavefronts. For each point on the (x,y) plane, a raypath exists whose tangent at that point is horizontal. As we have seen, this is the point of maximum depth. By the eikonal equation, the tangent of the wavefront passing through that point must be vertical. The center C of the circular raypath lies vertically under this point. For the moment, we will assume that the wavefront is also circular. It follows that the center G of this circular wavefront must lie horizontally to the side of this point. But where does the center reside? Because everything is symmetric about the vertical axis, it follows that the center of this circular wavefront must lie on the vertical axis. Thus, the required wavefront is a circle with center and radius given, respectively, by
( )
We now can drop the subscript from . As observed Slotnick (1959)[1], the wavefronts are circles whose centers are along the y-axis at the points and whose radii are at where t is the traveltime corresponding to each wavefront.
An arbitrary point on the wavefront circle is given by
( )
All the raypaths are circles with centers on the horizontal line where vertical velocity would be zero (Figure 15). All the wavefronts are circles with centers on the y-axis (Figure 16). The set of raypaths and the set of wavefronts are mutually orthogonal (Figure 17).
Referencias
- ↑ Slotnick. M. M., 1959, Lessons in seismic computing: SEG.
Sigue leyendo
Sección previa | Siguiente sección |
---|---|
Punto de máxima profundidad | Dos conjuntos ortogonales de círculos |
Capítulo previo | Siguiente capítulo |
Movimiento de ondas | Visualización |
También en este capítulo
- Sismología de Reflexión
- Procesamiento digitales
- Realce de señales
- Migración
- Interpretación
- Rayos
- Vector unitario tangente
- Tiempo de viaje
- El gradiente
- La derivada direccional
- El principio de tiempo mínimo
- La ecuación de Eikonal
- Ley de Snell
- Ecuación del rayo
- Ecuacón del rayo para velocidad lineal con la profundidad
- Camino del rayo para velocidad lineal con la profundidad
- Tiempo de viaje para velocidad lineal con la profundidad
- Punto de máxima profundidad
- Dos conjuntos ortogonales de círculos
- Migración en el caso de velocidad constante
- Implementación de la migración
- Apéndice B: Ejercicios