Transformada Z
![]() | |
Series | Geophysical References Series |
---|---|
Title | Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing |
Author | Enders A. Robinson and Sven Treitel |
Chapter | 7 |
DOI | http://dx.doi.org/10.1190/1.9781560801610 |
ISBN | 9781560801481 |
Store | SEG Online Store |
How do the definitions of the Z-transform differ? Geophysicists and electrical engineers have different conventions with respect to the z-transform (see also the discussion in Chapter 6). Let be the impulse response of a causal time-invariant linear filter. The engineering z-transform (with lowercase z) is
( )
whereas the geophysics Z-transform (with capital Z) is the generating function
( )
The two are related by . Whereas the engineering z represents a unit advance operator, the geophysics Z represents a unit delay operator.
Table 1 gives the engineering z-transforms of some common signals.
By letting , Table 1 becomes Table 2 for the corresponding geophysical Z-transforms.
How is the Fourier transform obtained from the Z-transform? The Fourier transform (electrical engineering convention) of a causal signal in terms of angular frequency is
( )
The Fourier transform is obtained from the engineering z-transform
( )
by the substitution .
The Fourier transform (electrical engineering convention) is obtained from the geophysical Z-transform
( )
by the substitution . The locus of is the unit circle . As angular frequency increases from through to , the point goes around the unit circle (in a clockwise direction) from Z = +1 through Z = +i to Z = -1. The Fourier transform represents the value of the Z-transform on the unit circle (Figure 1).

Signal name | Signal | z-transform | Convergence region |
---|---|---|---|
Unit impulse | for
otherwise |
1 | Everywhere |
Delayed impulse | for fixed k > 0 | ||
Unit causal step |
|
||
Negative anticausal step | |||
Ramp | |||
Causal geometric | |||
Negative anticausal geometric | |||
Causal cosine | |||
Causal sine | |||
Causal geometric cosine | |||
Causal geometric sine |
Signal name | Signal | z-transform | Convergence region |
---|---|---|---|
Unit impulse | for
otherwise |
1 | Everywhere |
Delayed impulse | for fixed k > 0 | ||
Unit causal step |
|
||
Negative anticausal step | |||
Ramp | |||
Causal geometric | |||
Negative anticausal geometric | |||
Causal cosine | |||
Causal sine | |||
Causal geometric cosine | |||
Causal geometric sine |
Sigue leyendo
Sección previa | Siguiente sección |
---|---|
Transformada de Fourier | Retraso: Mínimo, mixto y máximo |
Capítulo previo | Siguiente capítulo |
Frecuencia | Sintéticos |
También en este capítulo
- Ondículas
- Transformada de Fourier
- Retraso: Mínimo, mixto y máximo
- Ondículas de doble longitude
- Ilustración del espectro
- Retraso en general
- Energía
- Autocorrelación
- Representación canónica
- Ondículas de fase cero
- Ondículas simétricas
- Ondícula de Ricker
- Apéndice G: Ejercicios