Causalidad y estabilidad de sistemas analógicos
![]() | |
Series | Geophysical References Series |
---|---|
Title | Digital Imaging and Deconvolution: The ABCs of Seismic Exploration and Processing |
Author | Enders A. Robinson and Sven Treitel |
Chapter | 15 |
DOI | http://dx.doi.org/10.1190/1.9781560801610 |
ISBN | 9781560801481 |
Store | SEG Online Store |
The transfer function of an analog system is the Laplace transform of the impulse-response function . A causal system is one for which is one sided — that is, for . Suppose that we look at the impulse response of a causal system as . If
( )
we say that the system is stable.
In Example A, the prototype causal analog signal is the causal exponential
( )
For our purposes, we assume that the parameter a is a real number. The Laplace transform is
( )
This integral converges for . That is, the region of convergence is the half-plane to the right of the point a. Case A1 is for . The region of convergence includes the axis (Figure 8a), and the causal signal is stable. Case A2 is for . The region of convergence does not include the axis (Figure 8b), and the causal signal is unstable.
In Example B, the prototype anticausal analog signal is the anticausal exponential
( )
Its Laplace transform is
( )
which converges for . That is, the region of convergence is the half-plane to the left of point a. Case B1 is for . The region of convergence includes the axis (Figure 9a), and the anticausal signal is unstable. Case B2 is for . The region of convergence includes the axis (Figure 9b), and the anticausal signal is stable. As is the case with digital signals, we usually would choose stability at the expense of causality in the case of analog signals.
Sigue leyendo
Sección previa | Siguiente sección |
---|---|
Causalidad y estabilidad de sistemas digitales | Respuesta en frecuencia de un sistema digital |
Capítulo previo | Siguiente capítulo |
Absorción | nada |
También en este capítulo
- Introducción - Capítulo 15
- Sistemas digitales lineales invariantes en el tiempo
- Sistemas analógicos lineales invariantes en el tiempo
- Funciones digitales de transferencia
- Funciones análogicas de transferencia
- Causalidad y estabilidad de sistemas digitales
- Respuesta en frecuencia de un sistema digital
- Predicción digital
- Predicción digital del error
- Predicción analógica del error