Velocity versus depth from sonobuoy data

From SEG Wiki
Jump to: navigation, search

Problem 5.19

Determine velocity versus depth from Figure 5.19a assuming horizontal refractors. The direct wave that travels through the water (assume ) can be used to give source-receiver distances.


A sonobuoy is a free-floating device that radios the outputs of hydrophones to a recording ship. The ship fires its sources as it sails away from the sonobuoy to achieve a refraction profile.

Figure 5.19a.  Sonobuoy refraction profile.


Figure 5.19b shows the picked events , , , and the waterbreak. This is an old profile where navigation was not as accurate as today. The direct-arrival waterbreak forms a distinct first arrival out to about SP 120 and an alignment with about the same slope can be seen from about SP 140 to SP 190, but it does not quite align with the water break seen at shorter offsets. The disagreement may merely indicate that the recording ship speed varied (note slight slope changes in the waterbreak alignment) and/or the sonobuoy drifted during the recording. We determine 48.5 m/SP or 11.8 km for the maximum offset. The first trace is 400 m from the sonobuoy.

Figure 5.19b.  Identification of events on Figure 5.19a.

Three distinct refraction (headwave) events can be seen: event , which gives the first breaks beyond SP 150; , which gives the first breaks between SP 120 and 150, and , which has a projected arrival time at SP 240 of about 6.4 s. When is a first break, its velocity is about 2.5 km/s but when it is a second arrival (problem 6.12), its velocity is about 2.9 km/s (the difference may be due to change of dip); we take its velocity as 2.7 km/s. Thus apparent velocities and intercept times for these events are about 5300, 2700, and 2400 m/s and 2.8, 1.7, and 1.4 s, respectively. Bearing in mind the distance uncertainties and timing errors (since first cycles are not clear enough for timing), we get crude answers only.

We get the depth of water by estimating for the sea-floor reflection; since , the water depth is about km.

Next we calculate depths to the refracting horizons using equation (4.18a) for , equation (4.18d) for and . The shallowest refractor is probably the top of the first consolidated rock, the material above it being unconsolidated sediments. We assume that the velocity in the sediments is close to that of water, so we get the depth to as follows:

We get the distance between and using the intercept time difference:

so the depth to is .

Figure 5.19c.  Profile interpretation.

For event , we get

To get the distance from to ,

depth to = depth to .

The first reflection (from the sea floor) occurs at 1.45 s and a multiple of the seafloor reflection arrives at about 2.9 s; events below this multiple are so confused that interpretation cannot be done.

Continue reading

Previous section Next section
Estimating lithology from stacking velocity Influence of direction on velocity analyses
Previous chapter Next chapter
Geometry of seismic waves Characteristics of seismic events

Table of Contents (book)

Also in this chapter

External links

find literature about
Velocity versus depth from sonobuoy data
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png