General form of Snell’s law

From SEG Wiki
Jump to: navigation, search

Problem 3.1a

3.1a A P-wave of amplitude is incident at the angle on a plane interface separating two solid media. This generates reflected and refracted P-waves and converted reflected and refracted S-waves. Amplitudes, angles of incidence and refraction, and directions of displacements of these waves are shown in Figure 3.1a.

Use Huygens’s principle to show that and that


(3.1a)

where is the raypath parameter. Equation (3.1a) is Snell’s law.

Background

When a wave is incident at the interface between two solid media, four boundary conditions must be satisfied (continuity of normal and tangental displacements and stresses). The velocities are determined by the densities and elastic constants while the angles of incidence, reflection, and refraction are fixed by the velocities [see equation (3.1a)]. So the only remaining parameters that one can adjust in order to satisfy the boundary conditions are the amplitudes of the four waves generated by the incident wave, the reflected and refracted P- and S-waves, , , , as shown in Figure 3.1a.

Figure 3.1a.  Raypaths at solid-solid interface.

Huygens’s principle states that each point on a wavefront acts as a new point source radiating energy in all directions. Subsequent wavefronts can be located by swinging arcs with centers at points on the wavefront and radii equal to the distance traveled in a fixed time interval, the new wavefront being the envelope of the arcs. If the first wavefront and the reflector are planar, only two arcs are necessary, the new wavefront being tangent to the arcs.

Solution

In Figure 3.1b, is a wavefront of a planar P-wave approaching a planar interface. When the wavefront reaches the interface, point becomes a new source radiating energy upward and downward according to Huygens’s principle. When reaches the interface at , the distance being , the wave reflected at has traveled upward the same distance . By drawing an arc with center and radius and then drawing a line from tangent to the arc, we get the reflected wavefront . The angle of incidence is and the angle of reflection is . In and the angles at and are (because rays are perpendicular to wavefronts). Since the triangles have a common side , they are equal and , that is, the angle of incidence equals the angle of reflection (Law of reflection).

Figure 3.1b.  Snell’s law derivation.

In the case of the refracted wave, is the angle of refraction and But , so we have

In Figure 3.1b, if we replace in with (compare with Figure 3.1a) and in with , we arrive at

Equating the four ratios of sines to velocities, we get equation (3.1a).

Problem 3.1b

3.1b Using the waveform (see problem 2.5b), where are direction cosines of the ray, show that (omitting the factor ) the incident, reflected, and refracted waves can be written


(3.1b)


(3.1c)

where


(3.1d)


(3.1e)

Solution

We write , where the plus sign is used for waves traveling upward (that is, in the positive -direction) and the minus for downward traveling waves. The velocity is for P-waves, for S-waves. We note that for P-waves, , , , 2. For S-waves we replace with so that , , , 2.

Thus, for P-waves, while for S-waves we have . Inserting the amplitudes , , we get equations (3.1b,c,d,e).

Continue reading

Previous section Next section
Diffraction from a half-plane Reflection/refraction at a solid/solid interface and displacement of a free surface
Previous chapter Next chapter
Theory of Seismic Waves Geometry of seismic waves

Table of Contents (book)

Also in this chapter

External links

find literature about
General form of Snell’s law
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png