Spatial sampling

From SEG Wiki
Jump to navigation Jump to search
Seismic Data Analysis
Seismic-data-analysis.jpg
Series Investigations in Geophysics
Author Öz Yilmaz
DOI http://dx.doi.org/10.1190/1.9781560801580
ISBN ISBN 978-1-56080-094-1
Store SEG Online Store


Spatial aliasing was discussed in detail in the 2-D Fourier transform and in relation to migration in further aspects of migration in practice. The spatial aliasing problem is caused by spatial undersampling of the wavefield to be migrated — for example, the stacked section. The spatial sampling of stacked data (without trace interpolation) is defined by the recording parameters. Therefore, receiver spacing, crossline spacing, and the crossline direction in relation to dominant dip direction used in the field must be chosen carefully.

Figure 1.2-21  A plane wave reflecting at normal incidence from a dipping reflector with a dip angle θ arrives at two consecutive receiver locations A and B at the surface with a separation Δx. Geometry of this plane wave is used to derive equation (6).


(6)

From Figure 1.2-21, note that a relationship exists between the trace spacing on a stacked section, dip, and the frequency at which spatial aliasing begins to occur. Imagine normal-incidence rays recorded at two receivers, A and B. In the constant-velocity case, the angle between the surface and the wavefront is the true dip of the reflector from which these rays emerged. There is a time delay equivalent to travelpath CB between the receivers at A and B. If this time delay is half the period of a given frequency component of the signal arriving at the receivers, then that frequency is at the threshold of being aliased.

From the relationship given by equation (1-7), note that the maximum frequency that is not aliased gets smaller at increasingly steeper dips, lower velocities, and coarser trace spacing. From this relationship, an optimum trace spacing can be derived for the inline and crossline directions based on the knowledge of a regional velocity field and subsurface dips. Typical trace spacings in the inline and crossline directions in 3-D surveys are 12.5 to 25 m, and 25 to 50 m, respectively. Even if the trace spacing in the crossline direction is as small as possible, for economic reasons, it usually is greater than that in the inline direction. Because of this, trace interpolation may be required along the crossline direction before migrating the data.

See also

External links

find literature about
Spatial sampling
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png