Interpretation of four-shot refraction data

ADVERTISEMENT
From SEG Wiki
Jump to: navigation, search

Problem 14.3

Find the velocities and depths of refractors in Figure 14.3b.

Background

The four-shot method uses a refraction spread with a source at each end to provide “short-shot” data and two sources offset inline beyond the critical distance (see problem 4.18) to provide “long-shot” data that permit accurate measurement of the refraction velocities. A refraction event appearing on both profiles can be identified by the slopes of the - curves. Geophones at the shot points are offset when shots at or are used.

Solution

Figure 14.3b shows east-west reversed profiles with sources and providing the short-shot (SS) data and sources and (not shown) that are offset inline to provide the long-shot (LS) data. We have labeled the different segments from to and fitted each with a straight line whose slope gives the apparent velocity. The SS segments were used to get intercept times as shown in the figure. Note that fitting straight lines to the data assumes that the refractors are planar, clearly an approximation.

The data suggest that this is a three-layer situation with dip down to the east. We note that the LS data segments , , and show a time-offset between geophones 6 and 7, as if indicating a fault downthrown to the east. However, evidences for features at depth (such as a fault cutting the refractor) should be displaced away from the source (because the head-wave path from the refractor to a geophone is inclined, as in Figure 14.3a). However profiles and show the same anomaly at the same location even though shot from opposite directions. Because our geophones spacing is only 20 m, this suggests that they are caused by something shallower than 20 m, and the most probable cause is a near-surface anomaly—perhaps a statics error in near-surface velocity or elevation corrections. We could make an empirical surface correction, but have not done so.

Figure 14.3a.  A feature on a refractor would be observed at from source but at from source .
Figure 14.3b.  Time-distance curves for four-shot data. Open squares and triangles represent short-shot data, solid squares and triangles are long-shot data. (after Milson, 1989, 173)


The SS data show a shallow refraction event (segments and ) that probably is a refraction from the top of an intermediate layer. The measured velocities are , , (note that neither nor is well determined, both being based on two points only), with intercept times , . Using equation (4.24f) we get

Because of the small dip, we can take and as vertical depths.

Comparison of velocities shows that segments and are the LS equivalent of SS segment , while and are equivalent to . To interpret these events we shall use the LS velocities and the SS intercept times.

Based on our previous discussion we ignore the displacements of segments and and and and draw the best-fit straight lines as shown in Figure 14.3b, obtaining , . We use these values plus the intercept times and to get the depth and dip.

We use the method of problem 4.24b to get and :

so , , .

Now , , (the fact that this value of agrees so closely with the above value is because both values depend upon the velocities).

The SS intercept times of 40 and 165 ms give the following depths:

Note that this value of is based on intercept times plus velocities, whereas the value is based on the velocities only.

Continue reading

Previous section Next section
Interpreting engineering refraction profiles END OF BOOK
Previous chapter Next chapter
Specialized techniques Introduction to Problems in Exploration Seismology and their Solutions

Table of Contents (book)

Also in this chapter

External links

find literature about
Interpretation of four-shot refraction data
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png