Structural fold
Folds are geologic structures that develop due to deformation of rocks. Layered strata are compressed and shortened, resulting in wave-like formations, consisting of crest and troughs.
How they form
Folds develop from deformation of rock in response to tectonic stress. This type of deformation is considered plastic, since the rock is not broken but instead it is deformed and bent into a new permanent shape. There are number of factors which determine how a rock reacts to stress, these include: material properties, pressure, temperature, and duration of stress.[1] Ideally for folds to form the temperature and pressure should be high, and duration of stress must be applied over a long period of time rather than quickly. Folds are commonly related to compressive forces from convergent boundaries, which shorten horizontally and force the rock to bend. Folds can occur in series as well as singularly. In the presence of faulting, stresses can also be generated which create fault-bend fold features.
Fold attributes
Folds can be characterized by their angle, scale, symmetry, attitude of hinge line and attitude of axial plane.
Scale
Folds vary in scale from huge bends in orogenic belts to mountain side features to microscopic folds. Similarly to other waves, an amplitude and wavelength can be calculated for the fold.
Parts of folds
- Limbs- Sides of the fold.
- Inflection Line- Line where surface changes sense of curvature. Transition line from anticline to syncline.
- Hinge Line- Line in the surface where the curvature is greatest.
- Axial Plane- Surface joining all hinge lines corresponding to a set of folds.
- Interlimb Angle – Angle between tangents to the fold surface drawn through the inflection lines.
Characteristics
Symmetry- If the shape of fold is a mirror image and of equal length on both sides of the hinge it is classified as symmetric, otherwise it is an asymmetric fold.
Tightness – Degree of folding is directly related to interlimb angle. Further categorized into acute or obtuse.
Acute
- Gentle 180 > i > 120
- Open 120 > i >70
- Close 70 > i > 30
- Tight 30 > i > 0
- Isoclinal i= 0
Obtuse
- Fan 0 > i > -70
- Involute -70 > i > -180
Attitude- Attitude in folds is measured by the strike and dip of axial plane, as well as trend and plunge of hinge line. Axial plane ranges from upright, to inclined, to recumbent or horizontal. Hinge line ranges from horizontal, to plunging, to vertical.
Types of folds
- Anticline
Folds in which the strata arch upwards. Older rocks are located in the center of the fold, limbs dip away from center.
- Syncline
Folds in which the strata arch downwards. Younger rocks are located in the center of the fold , limbs dip towards center
- Chevron
Symmetrical multi-layer folds typically seen in schists and other rocks with platy minerals. Tightness ranges from gentle to close.
- Kink
Asymmetrical multi-layer folds , developed in schists and finely lamitated rocks.
- Dome
Antiformal doubly plunging fold. Oldest rock are found in the center of the dome.
- Basin
Synformal doubly plunging fold. Youngest rock are found in the center of the basin.
Seismic exploration
For seismic interpreters, analyzing folds is key to comprehending the deformation processes that took place in the area of interest. For exploration, folds are valuable economically because they are proven hydrocarbon traps. In anticlines, oil migrates upward towards the crest within a reservoir rock and becomes trapped underneath an impermeable cap rock, thus becoming a hydrocarbon trap. In seismic, such a trap would appear at the top of the fold structure and it is characterized by a high negative amplitude formed by the impedance contrast between cap rock and the oil saturated rock underneath.

References
- ↑ Thompson Graham, Turk Jonathan, 1998, Introduction to Physical Geology 2nd Edition. https://books.google.com/books/about/Introduction_to_Physical_Geology.html?id=4tsSAQAAIAAJ
- ↑ Moores Eldrige, Twiss Robert J, Structural Geology 2nd Edition, 1992, https://books.google.com/books?id=14fn03iJ2r8C&dq=structural+geology+Twiss+and+Moores+second+edition&source=gbs_navlinks_s