Translations:Implementing deconvolution/8/en

From SEG Wiki
Jump to navigation Jump to search

The objective of deconvolution is to design and apply inverse filters (i.e., deconvolution filters) to the seismic trace to yield an estimate of the reflectivity function (Berkhout, 1977[1]). Each trace must be segmented into several deconvolution design windows. These choices usually are made by trial and error, and an operator then is computed for each design window. A deconvolution algorithm first determines and then applies a deconvolution filter to the trace. Such deconvolution filters can be designed either for spike deconvolution or for gap deconvolution. Both spike deconvolution and gap deconvolution are based on the same convolutional model, which describes the seismic trace as the convolution of a source signal with a seismic wavelet. The wavelet can incorporate any or all of the following components: the geophone response, the intrinsic absorption response, the response of the remaining instrumentation (amplifiers, and so forth), and the reflection response of the earth. In preselected windows or gates, the reflection response can be approximated by convolution of the desired reflectivity function with undesirable ghosts, multiples, reverberations, and intrinsic absorption responses. Following deconvolution, a band-pass filter can be applied to the deconvolved trace.

  1. Berkhout, A., 1977, Least-squares inverse filtering and wavelet deconvolution: Geophysics, 42, 1369-1383.