Translations:Frequency spectrum/7/en

From SEG Wiki
Jump to navigation Jump to search
ADVERTISEMENT

Spectral analysis plays an important role in geophysics, as it does in all science. See, for example, Robinson (1970[1], 1982[2], 1983[3]), Ulrych and Jensen (1974)[4], Treitel et al. (1977)[5], Gutowski et al. (1977[6], 1978[7]), Treitel and Robinson (1981)[8], Haykin et al. (1983)[9], Rosa and Ulrych (1991)[10], and Sacchi and Ulrych (1996)[11]. At this point, it is fitting to quote the inimitable words of Ulrych (2008[12], p. 1):

  1. Robinson, E. A., 1970, Spectral model of geological time measurements: Proceedings of the IEEE 9th Symposium on Adaptive Processes, Decision and Control, University of Texas at Austin, 20.1.1–20.1.3.
  2. Robinson, E. A., 1982, Spectral approach to geophysical inversion by Lorentz, Fourier, and radon transforms: Proceedings of the IEEE, 70, 1039–1054.
  3. Robinson, E. A., 1983, Iterative least-squares procedure for ARMA spectral estimation, in S. Haykin, ed., Nonlinear methods of spectral analysis, 2nd ed.: Topics in Applied Physics, no. 34, Springer, 127–153.
  4. Ulrych, T., and O. Jensen, 1974, Cross-spectral analysis using maximum entropy: Geophysics, 39, 353–356.
  5. Treitel, S., E. A. Robinson, and P. R. Gutowski, 1977, Empirical spectral analysis revisited: in J. J. H. Miller, ed., Topics in numerical analysis, 3: Academic Press, 429–446.
  6. Gutowski, P. R., E. A. Robinson, and S. Treitel, 1977, Novel aspects of spectral estimation: Proceedings of the 1977 Joint Automatic Control Conference, 1, 99–104.
  7. Gutowski, P. R., E. A. Robinson, and S. Treitel, 1978, Spectral estimation, fact or fiction: IEEE Transactions on Geoscience Electronics, GE-16, 80–84.
  8. Treitel, S., and E. A. Robinson, 1981, Maximum entropy spectral decomposition of a seismogram into its minimum entropy component plus noise: Geophysics, 46, 1108–1115.
  9. Haykin, S., S. Kesler, and E. A. Robinson, 1983, Recent advances in spectral estimation, in S. Haykin, ed., Nonlinear methods of spectral analysis, 2nd ed.: Topics in Applied Physics, no. 34, Springer, 245–260.
  10. Rosa, A. L. R., and T. J. Ulrych, 1991, Processing via spectral modeling: Geophysics, 56, 1244–1251.
  11. Sacchi, M. D., and T. J. Ulrych, 1996, Estimation of the discrete Fourier transform, a linear inversion approach: Geophysics, 61, 1128–1136.
  12. Ulrych, T., 2008, The role of amplitude and phase in processing and inversion: SEG Distinguished Lecture Program, 2008, <http://ce.seg.org/dl/spring2008/index.shtml> accessed 22 March 2008.