# Testing page

The [EDIT 8/18/15]quick brown fox jumps over the lazy dog.[nb 1]

## Notes

1. A footnote.[1]

## References

1. A reference for the footnote.

${\displaystyle {\dot {a}},{\ddot {a}},{\acute {a}},{\grave {a}}{\check {a}},{\breve {a}},{\tilde {a}},{\bar {a}}{\hat {a}},{\widehat {a}},{\vec {a}}}$

${\displaystyle {\dot {x}},{\ddot {x}}}$

Polynomial

${\displaystyle x_{1}=a^{2}+b^{2}+c^{2}}$

${\displaystyle x_{1,2}={\frac {-b\pm {\sqrt {b^{2}-4ac}}}{2a}}}$

Parentheses and fractions

${\displaystyle \left(3-x\right)\times \left({\frac {2}{3-x}}\right)=\left(3-x\right)\times \left({\frac {3}{2-x}}\right)}$

Tall Parentheses and fractions

${\displaystyle 2=\left({\frac {\left(3-x\right)\times 3}{2-x}}\right)}$

Force Rendering

${\displaystyle 4-2x=9-3x\!}$

Force Rendering

${\displaystyle -2x+3x=9-4\!}$

Integral

${\displaystyle \int _{a}^{x}\int _{a}^{s}f(y)\,dy\,ds=\int _{a}^{x}f(y)(x-y)\,dy\,}$

Summation

${\displaystyle \sum _{m=1}^{\infty }\sum _{n=1}^{\infty }{\frac {m^{2}\,n}{3^{m}\left(m\,3^{n}+n\,3^{m}\right)}}}$

Differential

${\displaystyle u''+p(x)u'+q(x)u=f(x),\,\,\,x>a}$

Absolute value

${\displaystyle |{\bar {z}}|=|z|,|({\bar {z}})^{n}|=|z|^{n},\arg(z^{n})=n\arg(z)\,}$

Limit

${\displaystyle \lim _{z\rightarrow z_{0}}f(z)=f(z_{0})\,}$

Integral

${\displaystyle \phi _{n}(\kappa )={\frac {1}{4\pi ^{2}\kappa ^{2}}}\int _{0}^{\infty }{\frac {\sin(\kappa R)}{\kappa R}}{\frac {\partial }{\partial R}}\left[R^{2}{\frac {\partial D_{n}(R)}{\partial R}}\right]\,dR\,}$

Integral

${\displaystyle \int _{0}^{\infty }x^{\alpha }\sin(x)\,dx=2^{\alpha }{\sqrt {\pi }}\,{\frac {\Gamma ({\frac {\alpha }{2}}+1)}{\Gamma ({\frac {1}{2}}-{\frac {\alpha }{2}})}}\,}$

Superscript & Subscript

${\displaystyle \phi _{n}(\kappa )=0.033C_{n}^{2}\kappa ^{-11/3},\,\,\,{\frac {1}{L_{0}}}<\!\!<\kappa <\!\!<{\frac {1}{l_{0}}}\,}$

Assorted

${\displaystyle f(x)={a_{0} \over 2}+\sum _{n=1}^{\infty }a_{n}\cos \left({2n\pi x \over T}\right)+b_{n}\sin \left({2n\pi x \over T}\right)\,}$

Continuation

${\displaystyle f(x)={\begin{cases}1&-1\leq x<0\\{\frac {1}{2}}&x=0\\x&0

Integral

${\displaystyle \Gamma (z)=\int _{0}^{\infty }e^{-t}t^{z-1}\,dt\,}$

Assorted

${\displaystyle J_{p}(z)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}\left({\frac {z}{2}}\right)^{2k+p}}{k!\Gamma (k+p+1)}}\,}$

Sequence

${\displaystyle {}_{p}F_{q}(a_{1},...,a_{p};c_{1},...,c_{q};z)=\sum _{n=0}^{\infty }{\frac {(a_{1})_{n}\cdot \cdot \cdot (a_{p})_{n}}{(c_{1})_{n}\cdot \cdot \cdot (c_{q})_{n}}}{\frac {z^{n}}{n!}}\,}$

Gamma Function

${\displaystyle \Gamma (n+1)=n\Gamma (n),\;n>0}$

Integral

${\displaystyle \int _{0}^{1}{\frac {1}{\sqrt {-\ln x}}}dx\,}$

Integral

${\displaystyle \int _{0}^{\infty }e^{-st}t^{x-1}\,dt,\ s>0\,}$

Summation

${\displaystyle B(u)=\sum _{k=0}^{N}{P_{k}}{N! \over k!(N-k)!}{u^{k}}(1-u)^{N-k}\,}$

Integral

${\displaystyle u(x,y)={\frac {1}{\sqrt {2\pi }}}\int _{0}^{\infty }f(\xi )\left[g(|x+\xi |,y)+g(|x-\xi |,y)\right]\,d\xi \,}$

${\displaystyle \exp _{a}b=a^{b},\exp b=e^{b},10^{m}}$

${\displaystyle \ln c,\lg d=\log e,\log _{10}f}$

${\displaystyle \sin a,\cos b,\tan c,\cot d,\sec e,\csc f}$

${\displaystyle \arcsin h,\arccos i,\arctan j}$

${\displaystyle \sinh k,\cosh l,\tanh m,\coth n}$

${\displaystyle \operatorname {sh} \,k,\operatorname {ch} \,l,\operatorname {th} \,m,\operatorname {coth} \,n}$

${\displaystyle \operatorname {argsh} \,o,\operatorname {argch} \,p,\operatorname {argth} \,q}$

${\displaystyle \operatorname {sgn} r,\left\vert s\right\vert }$

${\displaystyle \min x,\max y,\inf s,\sup t}$ ${\displaystyle \lim u,\liminf v,\limsup w}$ ${\displaystyle \dim p,\deg q,\det m,\ker \phi }$ ${\displaystyle \Pr j,\hom l,\lVert z\rVert ,\arg z}$ ${\displaystyle dt,\operatorname {d} t,\partial t,\nabla \psi }$ ${\displaystyle \operatorname {d} y/\operatorname {d} x,{\operatorname {d} y \over \operatorname {d} x},{\partial ^{2} \over \partial x_{1}\partial x_{2}}y}$ ${\displaystyle \prime ,\backprime ,f^{\prime },f',f'',f^{(3)},{\dot {y}},{\ddot {y}}}$ ${\displaystyle \infty ,\aleph ,\complement ,\backepsilon ,\eth ,\Finv ,\hbar }$ ${\displaystyle \Im ,\imath ,\jmath ,\Bbbk ,\ell ,\mho ,\wp ,\Re ,\circledS }$ ${\displaystyle s_{k}\equiv 0{\pmod {m}}}$ ${\displaystyle a\,{\bmod {\,}}b}$ ${\displaystyle \gcd(m,n),\operatorname {lcm} (m,n)}$ ${\displaystyle \mid ,\nmid ,\shortmid ,\nshortmid }$ ${\displaystyle \surd ,{\sqrt {2}},{\sqrt[{n}]{}},{\sqrt[{3}]{x^{3}+y^{3} \over 2}}}$ ${\displaystyle +,-,\pm ,\mp ,\dotplus }$ ${\displaystyle \times ,\div ,\divideontimes ,/,\backslash }$ ${\displaystyle \cdot ,*\ast ,\star ,\circ ,\bullet }$ ${\displaystyle \boxplus ,\boxminus ,\boxtimes ,\boxdot }$ ${\displaystyle \oplus ,\ominus ,\otimes ,\oslash ,\odot }$ ${\displaystyle \circleddash ,\circledcirc ,\circledast }$ ${\displaystyle \bigoplus ,\bigotimes ,\bigodot }$ ${\displaystyle \{\},\emptyset \emptyset \emptyset ,\varnothing }$ ${\displaystyle \in ,\notin \not \in ,\ni ,\not \ni }$ ${\displaystyle \cap ,\Cap ,\sqcap ,\bigcap ,\setminus ,\smallsetminus }$ ${\displaystyle \cup ,\Cup ,\sqcup ,\bigcup ,\bigsqcup ,\uplus ,\biguplus }$ ${\displaystyle \subset ,\Subset ,\sqsubset }$ ${\displaystyle \supset ,\Supset ,\sqsupset }$ ${\displaystyle \subseteq ,\nsubseteq ,\subsetneq ,\varsubsetneq ,\sqsubseteq }$ ${\displaystyle \supseteq ,\nsupseteq ,\supsetneq ,\varsupsetneq ,\sqsupseteq }$ ${\displaystyle \subseteqq ,\nsubseteqq ,\subsetneqq ,\varsubsetneqq }$ ${\displaystyle \supseteqq ,\nsupseteqq ,\supsetneqq ,\varsupsetneqq }$ ${\displaystyle =,\neq \neq ,\equiv ,\not \equiv }$

$\displaystyle \doteq, \overset{\underset{\mathrm{def}}{}}{=}, :=$

${\displaystyle \sim ,\nsim ,\backsim ,\thicksim ,\simeq ,\backsimeq ,\eqsim ,\cong ,\ncong }$ ${\displaystyle \approx ,\thickapprox ,\approxeq ,\asymp ,\propto ,\varpropto }$ ${\displaystyle <,\nless ,\ll ,\not \ll ,\lll ,\not \lll ,\lessdot }$ ${\displaystyle >,\ngtr ,\gg ,\not \gg ,\ggg ,\not \ggg ,\gtrdot }$ ${\displaystyle \leq \leq ,\lneq ,\leqq ,\nleqq ,\lneqq ,\lvertneqq }$ ${\displaystyle \geq \geq ,\gneq ,\geqq ,\ngeqq ,\gneqq ,\gvertneqq }$ ${\displaystyle \lessgtr \lesseqgtr \lesseqqgtr \gtrless \gtreqless \gtreqqless }$ ${\displaystyle \leqslant ,\nleqslant ,\eqslantless }$ ${\displaystyle \geqslant ,\ngeqslant ,\eqslantgtr }$ ${\displaystyle \lesssim ,\lnsim ,\lessapprox ,\lnapprox }$ ${\displaystyle \gtrsim ,\gnsim ,\gtrapprox ,\gnapprox }$ ${\displaystyle \prec ,\nprec ,\preceq ,\npreceq ,\precneqq }$ ${\displaystyle \succ ,\nsucc ,\succeq ,\nsucceq ,\succneqq }$ ${\displaystyle \preccurlyeq ,\curlyeqprec }$ ${\displaystyle \succcurlyeq ,\curlyeqsucc }$ ${\displaystyle \precsim ,\precnsim ,\precapprox ,\precnapprox }$ ${\displaystyle \succsim ,\succnsim ,\succapprox ,\succnapprox }$ ${\displaystyle \parallel ,\nparallel ,\shortparallel ,\nshortparallel }$ ${\displaystyle \perp ,\angle ,\sphericalangle ,\measuredangle ,45^{\circ }}$ ${\displaystyle \Box ,\blacksquare ,\diamond ,\Diamond \lozenge ,\blacklozenge ,\bigstar }$ ${\displaystyle \bigcirc ,\triangle \bigtriangleup ,\bigtriangledown }$ ${\displaystyle \vartriangle ,\triangledown }$ ${\displaystyle \blacktriangle ,\blacktriangledown ,\blacktriangleleft ,\blacktriangleright }$ ${\displaystyle \forall ,\exists ,\nexists }$ ${\displaystyle \therefore ,\because ,\And }$ ${\displaystyle \lor \lor \vee ,\curlyvee ,\bigvee }$ ${\displaystyle \land \land \wedge ,\curlywedge ,\bigwedge }$ ${\displaystyle {\bar {q}},{\overline {q}},\lnot \neg ,\not \operatorname {R} ,\bot ,\top }$ ${\displaystyle \vdash \dashv ,\vDash ,\Vdash ,\models }$ ${\displaystyle \Vvdash \nvdash \nVdash \nvDash \nVDash }$ ${\displaystyle \ulcorner \urcorner \llcorner \lrcorner }$ ${\displaystyle \Rrightarrow ,\Lleftarrow }$ ${\displaystyle \Rightarrow ,\nRightarrow ,\Longrightarrow \implies }$ ${\displaystyle \Leftarrow ,\nLeftarrow ,\Longleftarrow }$ ${\displaystyle \Leftrightarrow ,\nLeftrightarrow ,\Longleftrightarrow \iff }$ ${\displaystyle \Uparrow ,\Downarrow ,\Updownarrow }$ ${\displaystyle \rightarrow \to ,\nrightarrow ,\longrightarrow }$ ${\displaystyle \leftarrow \gets ,\nleftarrow ,\longleftarrow }$ ${\displaystyle \leftrightarrow ,\nleftrightarrow ,\longleftrightarrow }$ ${\displaystyle \uparrow ,\downarrow ,\updownarrow }$ ${\displaystyle \nearrow ,\swarrow ,\nwarrow ,\searrow }$ ${\displaystyle \mapsto ,\longmapsto }$ ${\displaystyle \rightharpoonup \rightharpoondown \leftharpoonup \leftharpoondown \upharpoonleft \upharpoonright \downharpoonleft \downharpoonright \rightleftharpoons \leftrightharpoons }$ ${\displaystyle \curvearrowleft \circlearrowleft \Lsh \upuparrows \rightrightarrows \rightleftarrows \rightarrowtail \looparrowright }$ ${\displaystyle \curvearrowright \circlearrowright \Rsh \downdownarrows \leftleftarrows \leftrightarrows \leftarrowtail \looparrowleft }$ ${\displaystyle \hookrightarrow \hookleftarrow \multimap \leftrightsquigarrow \rightsquigarrow \twoheadrightarrow \twoheadleftarrow }$ ${\displaystyle \amalg \P \S \%\dagger \ddagger \ldots \cdots }$ ${\displaystyle \smile \frown \wr \triangleleft \triangleright }$ ${\displaystyle \diamondsuit ,\heartsuit ,\clubsuit ,\spadesuit ,\Game ,\flat ,\natural ,\sharp }$ ${\displaystyle \diagup \diagdown \centerdot \ltimes \rtimes \leftthreetimes \rightthreetimes }$ ${\displaystyle \eqcirc \circeq \triangleq \bumpeq \Bumpeq \doteqdot \risingdotseq \fallingdotseq }$ ${\displaystyle \intercal \barwedge \veebar \doublebarwedge \between \pitchfork }$ ${\displaystyle \vartriangleleft \ntriangleleft \vartriangleright \ntriangleright }$ ${\displaystyle \trianglelefteq \ntrianglelefteq \trianglerighteq \ntrianglerighteq }$

${\displaystyle \mathrm {A} \mathrm {B} \Gamma \Delta \mathrm {E} \mathrm {Z} }$ ${\displaystyle \mathrm {H} \Theta \mathrm {I} \mathrm {K} \Lambda \mathrm {M} }$ ${\displaystyle \mathrm {N} \Xi \Pi \mathrm {P} \Sigma \mathrm {T} }$ ${\displaystyle \Upsilon \Phi \mathrm {X} \Psi \Omega }$ ${\displaystyle \alpha \beta \gamma \delta \epsilon \zeta }$ ${\displaystyle \eta \theta \iota \kappa \lambda \mu }$ ${\displaystyle \nu \xi \pi \rho \sigma \tau }$ ${\displaystyle \upsilon \phi \chi \psi \omega }$ ${\displaystyle \varepsilon \digamma \varkappa \varpi }$ ${\displaystyle \varrho \varsigma \vartheta \varphi }$

${\displaystyle \mathbb {A} \mathbb {B} \mathbb {C} \mathbb {D} \mathbb {E} \mathbb {F} \mathbb {G} }$ ${\displaystyle \mathbb {H} \mathbb {I} \mathbb {J} \mathbb {K} \mathbb {L} \mathbb {M} }$ ${\displaystyle \mathbb {N} \mathbb {O} \mathbb {P} \mathbb {Q} \mathbb {R} \mathbb {S} \mathbb {T} }$ ${\displaystyle \mathbb {U} \mathbb {V} \mathbb {W} \mathbb {X} \mathbb {Y} \mathbb {Z} }$

${\displaystyle \mathbf {A} \mathbf {B} \mathbf {C} \mathbf {D} \mathbf {E} \mathbf {F} \mathbf {G} }$ ${\displaystyle \mathbf {H} \mathbf {I} \mathbf {J} \mathbf {K} \mathbf {L} \mathbf {M} }$ ${\displaystyle \mathbf {N} \mathbf {O} \mathbf {P} \mathbf {Q} \mathbf {R} \mathbf {S} \mathbf {T} }$ ${\displaystyle \mathbf {U} \mathbf {V} \mathbf {W} \mathbf {X} \mathbf {Y} \mathbf {Z} }$ ${\displaystyle \mathbf {a} \mathbf {b} \mathbf {c} \mathbf {d} \mathbf {e} \mathbf {f} \mathbf {g} }$ ${\displaystyle \mathbf {h} \mathbf {i} \mathbf {j} \mathbf {k} \mathbf {l} \mathbf {m} }$ ${\displaystyle \mathbf {n} \mathbf {o} \mathbf {p} \mathbf {q} \mathbf {r} \mathbf {s} \mathbf {t} }$ ${\displaystyle \mathbf {u} \mathbf {v} \mathbf {w} \mathbf {x} \mathbf {y} \mathbf {z} }$ ${\displaystyle \mathbf {0} \mathbf {1} \mathbf {2} \mathbf {3} \mathbf {4} }$ ${\displaystyle \mathbf {5} \mathbf {6} \mathbf {7} \mathbf {8} \mathbf {9} }$

${\displaystyle {\boldsymbol {\mathrm {A} }}{\boldsymbol {\mathrm {B} }}{\boldsymbol {\Gamma }}{\boldsymbol {\Delta }}{\boldsymbol {\mathrm {E} }}{\boldsymbol {\mathrm {Z} }}}$ ${\displaystyle {\boldsymbol {\mathrm {H} }}{\boldsymbol {\Theta }}{\boldsymbol {\mathrm {I} }}{\boldsymbol {\mathrm {K} }}{\boldsymbol {\Lambda }}{\boldsymbol {\mathrm {M} }}}$ ${\displaystyle {\boldsymbol {\mathrm {N} }}{\boldsymbol {\Xi }}{\boldsymbol {\Pi }}{\boldsymbol {\mathrm {P} }}{\boldsymbol {\Sigma }}{\boldsymbol {\mathrm {T} }}}$ ${\displaystyle {\boldsymbol {\Upsilon }}{\boldsymbol {\Phi }}{\boldsymbol {\mathrm {X} }}{\boldsymbol {\Psi }}{\boldsymbol {\Omega }}}$ ${\displaystyle {\boldsymbol {\alpha }}{\boldsymbol {\beta }}{\boldsymbol {\gamma }}{\boldsymbol {\delta }}{\boldsymbol {\epsilon }}{\boldsymbol {\zeta }}}$ ${\displaystyle {\boldsymbol {\eta }}{\boldsymbol {\theta }}{\boldsymbol {\iota }}{\boldsymbol {\kappa }}{\boldsymbol {\lambda }}{\boldsymbol {\mu }}}$ ${\displaystyle {\boldsymbol {\nu }}{\boldsymbol {\xi }}{\boldsymbol {\pi }}{\boldsymbol {\rho }}{\boldsymbol {\sigma }}{\boldsymbol {\tau }}}$ ${\displaystyle {\boldsymbol {\upsilon }}{\boldsymbol {\phi }}{\boldsymbol {\chi }}{\boldsymbol {\psi }}{\boldsymbol {\omega }}}$ ${\displaystyle {\boldsymbol {\varepsilon }}{\boldsymbol {\digamma }}{\boldsymbol {\varkappa }}{\boldsymbol {\varpi }}}$ ${\displaystyle {\boldsymbol {\varrho }}{\boldsymbol {\varsigma }}{\boldsymbol {\vartheta }}{\boldsymbol {\varphi }}}$

${\displaystyle {\mathit {A}}{\mathit {B}}{\mathit {C}}{\mathit {D}}{\mathit {E}}{\mathit {F}}{\mathit {G}}}$ ${\displaystyle {\mathit {H}}{\mathit {I}}{\mathit {J}}{\mathit {K}}{\mathit {L}}{\mathit {M}}}$ ${\displaystyle {\mathit {N}}{\mathit {O}}{\mathit {P}}{\mathit {Q}}{\mathit {R}}{\mathit {S}}{\mathit {T}}}$ ${\displaystyle {\mathit {U}}{\mathit {V}}{\mathit {W}}{\mathit {X}}{\mathit {Y}}{\mathit {Z}}}$ ${\displaystyle {\mathit {a}}{\mathit {b}}{\mathit {c}}{\mathit {d}}{\mathit {e}}{\mathit {f}}{\mathit {g}}}$ ${\displaystyle {\mathit {h}}{\mathit {i}}{\mathit {j}}{\mathit {k}}{\mathit {l}}{\mathit {m}}}$ ${\displaystyle {\mathit {n}}{\mathit {o}}{\mathit {p}}{\mathit {q}}{\mathit {r}}{\mathit {s}}{\mathit {t}}}$ ${\displaystyle {\mathit {u}}{\mathit {v}}{\mathit {w}}{\mathit {x}}{\mathit {y}}{\mathit {z}}}$ ${\displaystyle {\mathit {0}}{\mathit {1}}{\mathit {2}}{\mathit {3}}{\mathit {4}}}$ ${\displaystyle {\mathit {5}}{\mathit {6}}{\mathit {7}}{\mathit {8}}{\mathit {9}}}$

${\displaystyle \mathrm {A} \mathrm {B} \mathrm {C} \mathrm {D} \mathrm {E} \mathrm {F} \mathrm {G} }$ ${\displaystyle \mathrm {H} \mathrm {I} \mathrm {J} \mathrm {K} \mathrm {L} \mathrm {M} }$ ${\displaystyle \mathrm {N} \mathrm {O} \mathrm {P} \mathrm {Q} \mathrm {R} \mathrm {S} \mathrm {T} }$ ${\displaystyle \mathrm {U} \mathrm {V} \mathrm {W} \mathrm {X} \mathrm {Y} \mathrm {Z} }$ ${\displaystyle \mathrm {a} \mathrm {b} \mathrm {c} \mathrm {d} \mathrm {e} \mathrm {f} \mathrm {g} }$ ${\displaystyle \mathrm {h} \mathrm {i} \mathrm {j} \mathrm {k} \mathrm {l} \mathrm {m} }$ ${\displaystyle \mathrm {n} \mathrm {o} \mathrm {p} \mathrm {q} \mathrm {r} \mathrm {s} \mathrm {t} }$ ${\displaystyle \mathrm {u} \mathrm {v} \mathrm {w} \mathrm {x} \mathrm {y} \mathrm {z} }$ ${\displaystyle \mathrm {0} \mathrm {1} \mathrm {2} \mathrm {3} \mathrm {4} }$ ${\displaystyle \mathrm {5} \mathrm {6} \mathrm {7} \mathrm {8} \mathrm {9} }$

${\displaystyle {\mathfrak {A}}{\mathfrak {B}}{\mathfrak {C}}{\mathfrak {D}}{\mathfrak {E}}{\mathfrak {F}}{\mathfrak {G}}}$ ${\displaystyle {\mathfrak {H}}{\mathfrak {I}}{\mathfrak {J}}{\mathfrak {K}}{\mathfrak {L}}{\mathfrak {M}}}$ ${\displaystyle {\mathfrak {N}}{\mathfrak {O}}{\mathfrak {P}}{\mathfrak {Q}}{\mathfrak {R}}{\mathfrak {S}}{\mathfrak {T}}}$ ${\displaystyle {\mathfrak {U}}{\mathfrak {V}}{\mathfrak {W}}{\mathfrak {X}}{\mathfrak {Y}}{\mathfrak {Z}}}$ ${\displaystyle {\mathfrak {a}}{\mathfrak {b}}{\mathfrak {c}}{\mathfrak {d}}{\mathfrak {e}}{\mathfrak {f}}{\mathfrak {g}}}$ ${\displaystyle {\mathfrak {h}}{\mathfrak {i}}{\mathfrak {j}}{\mathfrak {k}}{\mathfrak {l}}{\mathfrak {m}}}$ ${\displaystyle {\mathfrak {n}}{\mathfrak {o}}{\mathfrak {p}}{\mathfrak {q}}{\mathfrak {r}}{\mathfrak {s}}{\mathfrak {t}}}$ ${\displaystyle {\mathfrak {u}}{\mathfrak {v}}{\mathfrak {w}}{\mathfrak {x}}{\mathfrak {y}}{\mathfrak {z}}}$ ${\displaystyle {\mathfrak {0}}{\mathfrak {1}}{\mathfrak {2}}{\mathfrak {3}}{\mathfrak {4}}}$ ${\displaystyle {\mathfrak {5}}{\mathfrak {6}}{\mathfrak {7}}{\mathfrak {8}}{\mathfrak {9}}}$

${\displaystyle {\mathcal {A}}{\mathcal {B}}{\mathcal {C}}{\mathcal {D}}{\mathcal {E}}{\mathcal {F}}{\mathcal {G}}}$ ${\displaystyle {\mathcal {H}}{\mathcal {I}}{\mathcal {J}}{\mathcal {K}}{\mathcal {L}}{\mathcal {M}}}$ ${\displaystyle {\mathcal {N}}{\mathcal {O}}{\mathcal {P}}{\mathcal {Q}}{\mathcal {R}}{\mathcal {S}}{\mathcal {T}}}$ ${\displaystyle {\mathcal {U}}{\mathcal {V}}{\mathcal {W}}{\mathcal {X}}{\mathcal {Y}}{\mathcal {Z}}}$

${\displaystyle \aleph \beth \gimel \daleth }$

${\displaystyle \left({\frac {a}{b}}\right)}$ ${\displaystyle \left[{\frac {a}{b}}\right]\quad \left\lbrack {\frac {a}{b}}\right\rbrack }$ ${\displaystyle \left\{{\frac {a}{b}}\right\}\quad \left\lbrace {\frac {a}{b}}\right\rbrace }$ ${\displaystyle \left\langle {\frac {a}{b}}\right\rangle }$ ${\displaystyle \left|{\frac {a}{b}}\right\vert \left\Vert {\frac {c}{d}}\right\|}$ ${\displaystyle \left\lfloor {\frac {a}{b}}\right\rfloor \left\lceil {\frac {c}{d}}\right\rceil }$ ${\displaystyle \left/{\frac {a}{b}}\right\backslash }$ ${\displaystyle \left\uparrow {\frac {a}{b}}\right\downarrow \quad \left\Uparrow {\frac {a}{b}}\right\Downarrow \quad \left\updownarrow {\frac {a}{b}}\right\Updownarrow }$ ${\displaystyle \left[0,1\right)}$ ${\displaystyle \left\langle \psi \right|}$ ${\displaystyle \left.{\frac {A}{B}}\right\}\to X}$ ${\displaystyle }$ ${\displaystyle {\big (}{\Big (}{\bigg (}{\Bigg (}\dots {\Bigg ]}{\bigg ]}{\Big ]}{\big ]}/}$ ${\displaystyle {\big \{}{\Big \{}{\bigg \{}{\Bigg \{}\dots {\Bigg \rangle }{\bigg \rangle }{\Big \rangle }{\big \rangle }}$ ${\displaystyle {\big \|}{\Big \|}{\bigg \|}{\Bigg \|}\dots {\Bigg |}{\bigg |}{\Big |}{\big |}}$ ${\displaystyle {\big \lfloor }{\Big \lfloor }{\bigg \lfloor }{\Bigg \lfloor }\dots {\Bigg \rceil }{\bigg \rceil }{\Big \rceil }{\big \rceil }}$ ${\displaystyle {\big \uparrow }{\Big \uparrow }{\bigg \uparrow }{\Bigg \uparrow }\dots {\Bigg \Downarrow }{\bigg \Downarrow }{\Big \Downarrow }{\big \Downarrow }}$ ${\displaystyle {\big \updownarrow }{\Big \updownarrow }{\bigg \updownarrow }{\Bigg \updownarrow }\dots {\Bigg \Updownarrow }{\bigg \Updownarrow }{\Big \Updownarrow }{\big \Updownarrow }}$ ${\displaystyle {\big /}{\Big /}{\bigg /}{\Bigg /}\dots {\Bigg \backslash }{\bigg \backslash }{\Big \backslash }{\big \backslash }}$

$\displaystyle \frac{2}{4}=0.5 or {2 \over 4}=0.5$

${\displaystyle {\tfrac {2}{4}}=0.5}$

${\displaystyle {\dfrac {2}{4}}=0.5\qquad {\dfrac {2}{c+{\dfrac {2}{d+{\dfrac {2}{4}}}}}}=a}$

${\displaystyle {\cfrac {2}{c+{\cfrac {2}{d+{\cfrac {2}{4}}}}}}=a}$

${\displaystyle {\binom {n}{k}}}$

${\displaystyle {\tbinom {n}{k}}}$

${\displaystyle {\dbinom {n}{k}}}$

${\displaystyle {\begin{matrix}x&y\\z&v\end{matrix}}}$

${\displaystyle {\begin{vmatrix}x&y\\z&v\end{vmatrix}}}$

${\displaystyle {\begin{Vmatrix}x&y\\z&v\end{Vmatrix}}}$

${\displaystyle {\begin{bmatrix}0&\cdots &0\\\vdots &\ddots &\vdots \\0&\cdots &0\end{bmatrix}}}$

${\displaystyle {\begin{Bmatrix}x&y\\z&v\end{Bmatrix}}}$

${\displaystyle {\begin{pmatrix}x&y\\z&v\end{pmatrix}}}$

${\displaystyle {\bigl (}{\begin{smallmatrix}a&b\\c&d\end{smallmatrix}}{\bigr )}}$

${\displaystyle f(n)={\begin{cases}n/2,&{\text{if }}n{\text{ is even}}\\3n+1,&{\text{if }}n{\text{ is odd}}\end{cases}}}$

{\displaystyle {\begin{aligned}f(x)&=(a+b)^{2}\\&=a^{2}+2ab+b^{2}\\\end{aligned}}}

${\displaystyle {\begin{array}{lcl}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}$

${\displaystyle {\begin{array}{lcr}z&=&a\\f(x,y,z)&=&x+y+z\end{array}}}$ ${\displaystyle f(x)\,\!=\sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots }$

${\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}}$

${\displaystyle {\begin{cases}3x+5y+z\\7x-2y+4z\\-6x+3y+2z\end{cases}}}$

${\displaystyle {\begin{array}{|c|c||c|}a&b&S\\\hline 0&0&1\\0&1&1\\1&0&1\\1&1&0\\\end{array}}}$