Plane wave modeling

From SEG Wiki
Jump to: navigation, search

Plane wave model is a far field approximation of wave propagation. Wave propagating in the Earth follows the second order wave equation


When the velocity is spatial variant or even anisotropic, estimation of becomes a complicated inversion problem. In this case, the following plane wave approximation can be used for wave modeling

where is the local slopes of event and appearent velocity of the wavefield. Phisical velocity inversion can be simplified by slope estimation in plane wave model.


Plane wave model was firstly introduced by Jon Claerbout in 1992 [1]. In 2002, Sergey Fomel [2] proposed to model the plane waves in frequency domain, where, the apparent velocity (local slopes ) becomes nonlinear function of wavefield. A wideband linear phase approximation was introduced to plane wave model by Zhonghuan Chen in 2013 [3] to optimize the frequency band of plane wave model. To improve performance near steep structures, an omnidirectional plane wave model is proposed [4].

Slope inversion

One of the most significant application of plane wave modeling is local slope estimation. In time domain, the slope can be estimatied from the wave field directly by finite difference methods.

A least squares or total least squares method is used to obtain a robust estimation here in noisy cases. The time domain plane wave model is straightforward and it can work well in single slope case. In frequency domain, the plane wave model becomes

where is a linear phase operator. With the polynomial-coefficients maxflat linear phase approximation, the above equation can be seen as a polynomial equation of the slope. The frequency domain plane wave model is suitable for multiple slope estimation, each slope becomes a solution of the polynomial equation.


Nonstationary denoise

Velocity analysis

Geometric interpretation


  1. Claerbout, J. F., 1992, Earth soundings analysis: Processing versus inversion: Blackwell Scientific Publications
  2. Fomel, S., 2002, Applications of plane-wave destruction filters: Geophysics, 67, 1946–1960
  3. Chen, Z. and et., 2013, Accelerated plane wave destruction: Geophysics, 78(1), V1-V9
  4. Chen, Z. and et., 2013, Omnidirectional plane wave destruction: Geophysics, 78(5), V171-V179

External links

find literature about
Plane wave modeling
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png