Structures de la Terre

From SEG Wiki
Jump to: navigation, search
This page is a translated version of the page Layers of the Earth and the translation is 42% complete.

Other languages:
English • ‎français

Les scientifiques définissent et décrivent l'intérieur de la Terre grâce au forage profond et à la tomographie sismique. Ces techniques ont permis aux chercheurs d'apprendre la structure physico-chimique de l'intérieur de la Terre.

Les couches terrestres selon la composition chimique

A début de la formation de la Terre, la planète a subi une période de différenciation qui a permis aux éléments les plus lourds de plonger en son centre et aux plus légers de remonter en surface. Les couches internes de la Terre peuvent se définir selon la composition chimique qui en résulte. Les trois couches principales de la Terre incluent la croûte (1 pourcent du volume de la Terre), le manteau (84 pourcent), et le noyau (interne et externe combinés, 15 pourcent).[1]


The solid crust is the outermost and thinnest layer of our planet. The crust averages 25 miles (40 kilometers) in thickness and is divided in to fifteen major tectonic plates that are rigid in the center and have geologic activity at the boundaries, such as earthquakes and volcanism.

The most abundant elements in the Earth’s crust include (listed here by weight percent) oxygen, silicon, aluminum, iron, and calcium. These elements combine to form the most abundant minerals in the Earth’s crust, members of the silicate family – plagioclase and alkali feldspars, quartz, pyroxenes, amphiboles, micas, and clay minerals.

All three rock types (igneous, sedimentary, and metamorphic) can be found in Earth’s crust. Crustal material is classified as oceanic crust or continental crust. Oceanic crust underlies our ocean basins, is thin, approximately 4 miles (7 kilometers) in thickness, and is composed of dense rocks, primarily the igneous rock basalt. Continental crust is thicker, ranging from 6 to 47 miles (10 to 75 kilometers), and has a high abundance of the less dense igneous rock granite. The oldest rocks on our planet are part of the continental crust and date back approximately 4 billion years in age. Ocean crust is constantly recycled through our planet’s system of plate tectonics and only dates back to approximately 200 million years ago.

The Integrated Ocean Drilling Program (IODP) has drilled deep in to the ocean crust (4,644 feet below the seafloor) but has not yet broken through to the next layer, the mantle. [2] The boundary between the crust and underlying mantle is termed the Mohorovicic discontinuity, often referred to as the Moho.


Mantle material is hot (932 to 1,652 degrees Fahrenheit, 500 to 900 degrees Celsius) and dense and moves as semi-solid rock. The mantle is 1,802 miles (2,900 km) thick and is composed of silicate minerals that are similar to ones found in the crust, except with more magnesium and iron and less silicon and aluminum.

The base of the mantle, at the boundary with the outer core, is termed the Gutenberg discontinuity. It is at this depth (1,802 miles, 2,900 km) where secondary earthquake waves, or S waves, disappear, as S waves cannot travel through liquid.

Scientists are utilizing seismic tomography to construct 3-dimensional images of the mantle, but there are still limitations with the technology to fully map the Earth's interior. [3]

Outer Core

The outer core is composed mostly of iron and nickel, with these metals found in liquid form. The outer core reaches between 7,200 and 9,000 degrees Fahrenheit (4,000 and 5,000 degrees Celsius) and is estimated to be 1,430 miles (2,300 km) thick. It is the movement of the liquid within the outer core that generates Earth’s magnetic field.

Inner Core

The inner core is the hottest part of our planet, at temperatures between 9,000 and 13,000 degrees Fahrenheit (5,000 and 7,000 degrees Celsius). This solid layer is smaller than our Moon at 750 miles (1,200 km) thick and is composed mostly of iron. The iron is under so much pressure from the overlying planet that it cannot melt and stays in a solid state.

The solid inner core is believed to have formed relatively recently, around half a billion years ago. [4] In February 2015, scientists reported in the journal Nature Geoscience their discovery that the inner core may in fact be two distinct cores with complex structural properties, where iron crystals in the outer layer of the inner core are oriented north-south, and iron crystals in the inner-inner core are aligned east-west. [5] This new discovery may help scientists learn more about the history and formation of planet Earth.

Layers based on physical properties

The Earth is separated into layers based on mechanical properties in addition to the composition layers described above.


The lithosphere is the outermost layer of the Earth ~100 km thick and is defined by its mechanical properties. This rigid layer includes the brittle upper portion of the mantle and the crust. The lithosphere is divided into 15 major tectonic plates, and it is at the boundary of these plates where major tectonic occurs, such as earthquakes and volcanoes. The lithosphere contains oceanic and continental crust that varies in age and thickness across locations and geologic time. The lithosphere is the coolest layer of the Earth in terms of temperature, with the heat from the lower layers generating the plate movements. The term "lithosphere" should not be confused with the use of "geosphere," which is used to indicate all of Earth's systems, including the atmosphere, hydrosphere, and biosphere.


L'asthénosphère inclut la partie supérieure du manteau qui est intensément visqueuse et mécaniquement faible. La limite lithosphère-asthénosphère (LAB) se situe là où les géophysiciens marque la différence de ductilité (une mesure de la capacité d'un matériau solide à se déformer ou à s'étirer sous la contrainte) entre les deux couches. Cette limite dans le manteau supérieur est marqué à l'isotherme 1300oC. Au-dessus de l'isotherme le manteau se comporte de façon rigide et en-dessous il se comporte de façon ductile. On estime que les roches ductiles de la partie supérieure de l'asthénosphère sont dans la zone où les immenses plaques lithosphériques rigides et cassantes de la croûte terrestre se déplacent. Les ondes sismiques se propagent relativement lentement au sein de l'asthénosphère.

La mésosphère

La mésosphère fait référence au manteau dans la région située sous la lithosphère et l'asthénosphère, mais au-dessus du noyau externe. La limite supérieure est définie par l'augmentation abrupte des vitesses de propagation des ondes sismiques et de la densité à une profondeur de 660 kilomètres. Cette couche ne doit pas être confondues avec la atmospheric mesosphere.

Voir aussi


  1. Robertson, Eugene C. (January 14, 2011). The Interior of the Earth. [1] U.S. Geological Survey. Consulté le 11 Mars 2015.
  2. Britt, Robert Roy. (April 7, 2005). Hole Drilled to Bottom of Earth's Crust, Breakthrough to Mantle Looms. [2] Accessed March 11, 2015.
  3. Foulger, G.R., and 11 additional authors. (August 25, 2015). What lies deep in the mantle below? [3] Accessed August 26, 2015.
  4. Davies, Christopher; Pozzo, Monica; and Alfe, Dario. (2015). Constraints from material properties on the dynamics and evolution of Earth’s core. [4]. Accessed August 30, 2015.
  5. Wang, Tao; Song, Xiaodong; and Xia, Han H. (February 9, 2015). Equatorial anisotropy in the inner part of Earth’s inner core from autocorrelation of earthquake coda. [5]. Accessed March 11, 2015.

Liens externes

  • Pour les enseignants de collèges et lycées, voir sur le site National Geographic Education: crust, mantle, core, lithosphere,
  • Egger, A. 2003. “Earth Structure” Visionlearning Vol. EAS (1), [6]