Xinming Wu

ADVERTISEMENT
From SEG Wiki
Revision as of 15:29, 18 January 2023 by Sstamm (talk | contribs) (update link)
Jump to: navigation, search
Xinming Wu
Wu-Xinming.jpg
MSc Geophysics
PhD Geophysics
MSc university Tongji University
PhD university Colorado School of Mines

Xinming Wu joined the USTC (University of Science and Technology of China) as a professor in 2019, where he started the Computational Interpretation Group (CIG). Xinming received an engineering degree (2009) in geophysics from Central South University, an M.Sc. (2012) in geophysics from Tongji University, and a Ph.D. (2016) in Geophysics from the Colorado School of Mines where he was a member working with Dave Hale at the Center for Wave Phenomena at the Center for Wave Phenomena. He interned twice at Transform Software and Services/DrillingInfo during the summer and winter of 2014. From 2016 to 2019, he was a postdoctoral fellow working with Sergey Fomel at Bureau of Economic Geology, The University of Texas at Austin.

He received SEG awards for Best Paper in Geophysics with Dave Hale in 2016, Best Student Poster Paper with Sean Bader and Sergey Fomel in 2017, and an Honorable Mention for Best Paper presented at the 2018 SEG Annual Meeting with Sergey Fomel in 2018. He also received the Shanghai excellent master thesis award in 2013 (Generating 3D seismic Wheeler volumes: methods and applications).[1] and was selected to be the 2020 SEG Honorary Lecturer, South and East Asia.

Xinming writes a lot of Java packages [2] for his research on seismic structural and stratigraphic interpretation, deep learning (e.g., FaultSeg), subsurface modeling, joint seismic and well-log interpretation, and geophysical inversion with geologic constraints.

2020 SEG Honorary Lecturer, South and East Asia

Deep learning for seismic processing and interpretation

Summaryː Seismic interpretation involves detecting and extracting structural information, stratigraphic features, and geobodies from seismic images. Although numerous automatic methods have been proposed, seismic interpretation today remains a highly time-consuming task which still requires significant human efforts. The conventional seismic interpretation methods or workflows are not automated or intelligent enough to efficiently or accurately interpret the rapidly increasing seismic data sets, which leaves significantly more data uninterpreted than interpreted.

We improve automatic seismic interpretation by using CNNs (convolutional neural networks) which recently have shown the best performance in detecting and extracting useful image features and objects. One main limitation of applying CNNs in seismic interpretation is the preparation of many training data sets and especially the corresponding geologic labels. Manually labeling geologic features in a seismic image is highly time-consuming and subjective, which often results in incompletely or inaccurately labeled training images. To solve this problem, we propose a workflow to automatically build diverse geologic models with geologically realistic features. Based on these models with known geologic information, we further automatically create numerous synthetic seismic images and the corresponding ground truth of geologic labels to train CNNs for geologic interpretation in field seismic images. Accurate interpretation results in multiple field seismic images show that the proposed workflow simulates realistic and generalized geologic models from which the CNNs effectively learn to recognize real geologic features in field images.

In this lecture, I would like the share you with our research experience on the following topics:

  1. Automatic preparation of training data sets and labels;
  2. CNN for fault detection, fault orientation estimation, and fault surface construction;
  3. CNN for relative geologic time and seismic horizons;
  4. CNN for seismic geobody tracking;
  5. CNN-based multitask learning in seismic interpretation.
HL-Wu-fig.jpg

A recording of the lecture is available.[3]

J. Clarence Karcher Award 2020

Honorable Mention (Best Paper, Annual Meeting) 2018

Xinming Wu shares the 2018 Honorable Mentions (Best Paper, Annual Meeting) with Dr. Sergey Fomel[4]

Best Poster Paper Presented by a Student at the Annual Meeting 2017

Xinming Wu shares the 2017 Best Poster Paper Presented by a Student at the Annual Meeting with Sean Bader and Dr. Sergey Fomel.[5]

Best Paper in Geophysics 2016

Xinming Wu shares the 2016 Best Paper in Geophysics Award with David Hale.[6]

References

External links

find literature about
Xinming Wu
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png