Difference between revisions of "Translations:D’Alembert’s solution/32/es"

From SEG Wiki
Jump to: navigation, search
(Created page with "u\left(x,t\right)}{\partial x^{{\rm 2}}}{\rm =}\frac{{\rm 1}}{v^{{\rm 2}}}\frac{{\partial }^{{\rm 2}}u\left(x,t\right)}{\partial t^{{\rm 2}}}, \end{align} </math>|{{EquationRe...")
 
Line 1: Line 1:
 +
{{NumBlk|:|<math>
 +
\begin{align}
 +
\frac{{\partial }^{{\rm 2}}
 
u\left(x,t\right)}{\partial x^{{\rm 2}}}{\rm =}\frac{{\rm 1}}{v^{{\rm 2}}}\frac{{\partial }^{{\rm 2}}u\left(x,t\right)}{\partial t^{{\rm 2}}},
 
u\left(x,t\right)}{\partial x^{{\rm 2}}}{\rm =}\frac{{\rm 1}}{v^{{\rm 2}}}\frac{{\partial }^{{\rm 2}}u\left(x,t\right)}{\partial t^{{\rm 2}}},
 
\end{align}
 
\end{align}
 
</math>|{{EquationRef|2}}}}
 
</math>|{{EquationRef|2}}}}

Revision as of 13:28, 22 April 2021

Information about message (contribute)

This message has no documentation. If you know where or how this message is used, you can help other translators by adding documentation to this message.

Message definition (D’Alembert’s solution)
where ''v'' is a constant. He was able to show that
Translation{{NumBlk|:|<math>
\begin{align}
\frac{{\partial }^{{\rm 2}}
u\left(x,t\right)}{\partial x^{{\rm 2}}}{\rm =}\frac{{\rm 1}}{v^{{\rm 2}}}\frac{{\partial }^{{\rm 2}}u\left(x,t\right)}{\partial t^{{\rm 2}}},
\end{align}
</math>|{{EquationRef|2}}}}
(2)