Time-variant deconvolution

From SEG Wiki
Revision as of 09:56, 4 August 2014 by Ifarley (talk | contribs) (added fig 2.6-4)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Seismic Data Analysis
Series Investigations in Geophysics
Author Öz Yilmaz
DOI http://dx.doi.org/10.1190/1.9781560801580
ISBN ISBN 978-1-56080-094-1
Store SEG Online Store

Nonstationarity was discussed in detail in the entries for gain applications and the convolutional model in the time domain. The time-variant character of the seismic wavelet (Figure 2.1-2) often requires a multiwindow deconvolution. Figure 2.6-4 is a field record that was deconvolved by using three time gates. The autocorrelograms from gates 1, 2, and 3 are shown in Figure 2.6-5. Note the difference in character of the reverberatory energy from one gate to another. The shallow gate (1) has more high-frequency signal than the middle gate (2); while the middle gate has more high-frequency signal than the deeper gate (3). For best results, we must design different deconvolution operators from different parts of the record and apply them to the corresponding time gates. Up to three windows usually are sufficient to handle the nonstationary character of the seismic signal.

Another example of single- and multiwindow deconvolution is shown in Figures 2.6-6 and 2.6-7. Here, autocorrelograms from different gates do not show significant variations. Therefore, it probably does not make any difference whether a single or multigate deconvolution is used. In Figures 2.6-6 and 2.6-7, the record is shown after deconvolution followed by a wide bandpass filter application. Since the amplitude spectrum of the input data is flattened as a result of spiking deconvolution, both the high-frequency ambient noise as much as the high-frequency components of the signal are boosted. Therefore, the output of spiking deconvolution often is filtered with a wide band-pass operator.

A practical problem with time-variant deconvolution is limiting design gates to small time windows. Consider, for instance, a three-window deconvolution of a 5s data. This means that at best an average gate kength of 1.5 s at near offset and less than 1 s at far offset can be used to design a deconvolution operator. To attain good statistics in an autocorrelation estimate, an operator length no more than one-eighth to one-tenth of the design gate, say 150 ms, should be considered. Hence, if you need to use a longer operator, time-variant deconvolution may have limited effectiveness in attenuating reverberations and short-period multiples. A way to account for nonstationarity while avoiding the short-operator effect of multiwindow deconvolution follows.

See also


External links

find literature about
Time-variant deconvolution
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png