Summation strategies

From SEG Wiki
Jump to navigation Jump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Seismic Data Analysis
Seismic-data-analysis.jpg
Series Investigations in Geophysics
Author Öz Yilmaz
DOI http://dx.doi.org/10.1190/1.9781560801580
ISBN ISBN 978-1-56080-094-1
Store SEG Online Store


Figure 8.5-10 shows the zero-offset wavefield responses of a point diffractor buried in media with varying degrees of complexity. The traveltime trajectories associated with the point diffractors buried in a constant-velocity medium, beneath an overburden with mild to moderate lateral velocity variations, and beneath an overburden with strong lateral velocity variations, all are single-valued. Therefore, ray tracing through such models would produce unambiguous traveltimes for Kirchhoff summation.

Figure 8.5-10  Zero-offset wavefield responses of a point diffractor buried in (a) a constant-velocity medium, (b) beneath an overburden with mild to moderate lateral velocity variations, (c) beneath an overburden with strong lateral velocity variations, and (d) beneath a complex overburden with severe lateral velocity variations.

The zero-offset traveltime trajectory associated with the point diffractor buried beneath an overburden with severe lateral velocity variations, however, is multivalued (Figures 8.5-10d). One would have to decide as to what summation path to choose:

  1. The travelpath that corresponds to the first arrivals; that is, minimum-time summation trajectory [1] [2],
  2. The travelpath that corresponds to the bowties that contain the most significant portion of the energy associated with the zero-offset wavefield response; that is, maximum-energy summation trajectory [3],
  3. The travelpath that corresponds to the shortest distance between the source or receiver point at the surface and the reflection point at the subsurface; that is, minimum-distance summation trajectory [4], or
  4. The entire multivalued travelpath.

From the zero-offset wavefields associated with a diffractor buried in a medium with varying complexity shown in Figure 8.5-10, it can be inferred that the minimum-time strategy may be suitable for cases of moderate to strong lateral velocity variations (Figure 8.5-10b,c), whereas the maximum-energy strategy may be imperative for a case of a complex overburden with severe lateral velocity variations (Figure 8.5-10d). Ideally, it would be desirable not to exclude any portion of the traveltime trajectory and use a multivalued summation path. This, however, can be formidably costly and often is not needed in practice. Efficient traveltime calculation and choice of a summation path are important considerations for the 3-D prestack depth migration of large volumes of seismic data [5] [6].

References

  1. Vidale, 1988, Vidale, J., 1988, Finite-difference calculation of traveltimes: Bull. Seis. Soc. Am., 78, 2026–2076.
  2. Podvin and Lecomte, 1991, Podvin, P. and Lecomte, I., 1991, Finite-difference computation of traveltimes for velocity-depth models with strong velocity contrast across layer boundaries — a massively parallel approach: Geophys. J. Int., 105, 271–284.
  3. Nichols, 1996, Nichols, D. E., 1996, Maximum-energy traveltimes calculated in the seismic frequency band: Geophysics, 61, 253–263.
  4. Moser, 1991, Moser, T. J., 1991, Shortest-path calculation of seismic rays: Geophysics, 56, 59–67.
  5. Meshbey et al., 1993, Meshbey, V., Kosloff, D., Ragoza, Y., Meshbey, O., Egozy, U., and Cozzens, J., 1993, A method for computing traveltimes for an arbitrary velocity model: Presented at the 45th Ann. EAGE Mtg.
  6. Sethian and Popovici, 1999, Sethian, J. A. and Popovici, A. M., 1999, 3-D traveltime computation using the fast marching method: Geophysics, 64, 516–523.

See also

External links

find literature about
Summation strategies
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png