# Search results

Results 1 – 6 of 6

#### Search in namespaces:

 (Main) Talk User User talk SEG Wiki SEG Wiki talk File File talk
 MediaWiki MediaWiki talk Template Template talk Help Help talk Category Category talk
 Property Property talk Form Form talk Concept Concept talk smw/schema smw/schema talk
 Rule Rule talk Widget Widget talk Campaign Campaign talk Dictionary DictionaryTalk
 TimedText TimedText talk Translations Translations talk
• <center> $f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}.$ </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. [/itex] </center>
15 KB (2,476 words) - 12:44, 12 September 2018
• c_n = \frac{1}{2 \pi i }\oint_C \frac{f(w)}{(w - a)^{n + 1}} \; dw. c_{n} = \frac{1}{2 \pi i} \oint_C \frac{f(w)}{(w - a)^{n + 1}} \; dw
7 KB (1,265 words) - 11:40, 2 November 2017
• ...ter> $\frac{1}{2\pi i } \oint_C \frac{ f(w) }{ ( w - a)^{n+1} } \; dw = \frac{f^{(n)} (a) }{n!}.$ </center>
2 KB (444 words) - 11:09, 2 May 2017
• <center> $f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}.$ </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. [/itex] </center>
14 KB (2,308 words) - 14:05, 24 July 2017
• <center> $f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}.$ </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. [/itex] </center>
15 KB (2,515 words) - 12:45, 22 January 2021
• ...ath>AWB[/itex]. Then, letting $h = C^{\prime}C, y = CW, x = AW = BW = DW = EW$, we have
8 KB (1,174 words) - 13:59, 28 February 2019