Search results

Jump to: navigation, search
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    15 KB (2,476 words) - 12:44, 12 September 2018
  • c_n = \frac{1}{2 \pi i }\oint_C \frac{f(w)}{(w - a)^{n + 1}} \; dw. c_{n} = \frac{1}{2 \pi i} \oint_C \frac{f(w)}{(w - a)^{n + 1}} \; dw
    7 KB (1,265 words) - 11:40, 2 November 2017
  • ...ter> <math> \frac{1}{2\pi i } \oint_C \frac{ f(w) }{ ( w - a)^{n+1} } \; dw = \frac{f^{(n)} (a) }{n!}. </math> </center>
    2 KB (444 words) - 11:09, 2 May 2017
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    14 KB (2,308 words) - 14:05, 24 July 2017
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    15 KB (2,515 words) - 12:45, 22 January 2021
  • ...ath>AWB</math>. Then, letting <math>h = C^{\prime}C, y = CW, x = AW = BW = DW = EW</math>, we have
    8 KB (1,174 words) - 13:59, 28 February 2019