Search results

Jump to: navigation, search
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    15 KB (2,476 words) - 12:44, 12 September 2018
  • c_n = \frac{1}{2 \pi i }\oint_C \frac{f(w)}{(w - a)^{n + 1}} \; dw. c_{n} = \frac{1}{2 \pi i} \oint_C \frac{f(w)}{(w - a)^{n + 1}} \; dw
    7 KB (1,265 words) - 11:40, 2 November 2017
  • ...ter> <math> \frac{1}{2\pi i } \oint_C \frac{ f(w) }{ ( w - a)^{n+1} } \; dw = \frac{f^{(n)} (a) }{n!}. </math> </center>
    2 KB (444 words) - 11:09, 2 May 2017
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center>
    92 bytes (18 words) - 13:48, 24 July 2017
  • ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    118 bytes (22 words) - 13:48, 24 July 2017
  • ...th> \mbox{Re} \; f(z) = \frac{1}{2 \pi } \oint_C \frac{\mbox{Im} \; f(w)\; dw }{w - z}. </math> </center>
    117 bytes (21 words) - 13:48, 24 July 2017
  • ...(\frac{ f(w)\; dw }{w - z} \right) + \int_{|z| = \epsilon} \frac{ f(w)\; dw }{w - z} + \int_{C_1} \frac{ f(w)\; dw }{w - z} </math> </center>
    332 bytes (59 words) - 13:48, 24 July 2017
  • ..._{-R}^{x - \epsilon} + \int_{x+\epsilon}^{R} \right) \left( \frac{ f(w) \; dw}{ w - z} \right) = i \pi f(z)
    218 bytes (35 words) - 13:48, 24 July 2017
  • ...Im} \; f(z) = - \frac{1}{\pi} \mbox{P.V.} \int \frac{ \mbox{Re} \; f(w) \; dw}{ w - z} </math> </center>
    127 bytes (24 words) - 13:48, 24 July 2017
  • ...{Re} \; f(z) = \frac{1}{\pi} \mbox{P.V.} \int \frac{ \mbox{Im} \; f(w) \; dw}{ w - z} </math> . </center>
    127 bytes (23 words) - 13:48, 24 July 2017
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    14 KB (2,308 words) - 14:05, 24 July 2017
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center> ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    15 KB (2,515 words) - 12:45, 22 January 2021
  • ...ath>AWB</math>. Then, letting <math>h = C^{\prime}C, y = CW, x = AW = BW = DW = EW</math>, we have
    114 KB (18,674 words) - 13:37, 6 June 2018
  • ...ath>AWB</math>. Then, letting <math>h = C^{\prime}C, y = CW, x = AW = BW = DW = EW</math>, we have
    8 KB (1,174 words) - 13:59, 28 February 2019
  • <center> <math> f(z) = \frac{1}{2 \pi i} \oint_C \frac{f(w)\; dw }{w - z}. </math> </center>
    92 bytes (18 words) - 14:40, 10 April 2019
  • ...h>\mbox{Im} \; f(z) = - \frac{1}{2 \pi } \oint_C \frac{\mbox{Re} \; f(w)\; dw }{w - z}. </math> </center>
    118 bytes (22 words) - 15:05, 10 April 2019
  • ...th> \mbox{Re} \; f(z) = \frac{1}{2 \pi } \oint_C \frac{\mbox{Im} \; f(w)\; dw }{w - z}. </math> </center>
    117 bytes (21 words) - 17:51, 10 April 2019
  • ...(\frac{ f(w)\; dw }{w - z} \right) + \int_{|z| = \epsilon} \frac{ f(w)\; dw }{w - z} + \int_{C_1} \frac{ f(w)\; dw }{w - z} </math> </center>
    332 bytes (59 words) - 18:20, 10 April 2019
  • ..._{-R}^{x - \epsilon} + \int_{x+\epsilon}^{R} \right) \left( \frac{ f(w) \; dw}{ w - z} \right) = i \pi f(z)
    218 bytes (35 words) - 19:51, 10 April 2019
  • ...Im} \; f(z) = - \frac{1}{\pi} \mbox{P.V.} \int \frac{ \mbox{Re} \; f(w) \; dw}{ w - z} </math> </center>
    127 bytes (24 words) - 20:01, 10 April 2019

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)