Seismic reservoir monitoring

ADVERTISEMENT
From SEG Wiki
Revision as of 08:39, 7 October 2014 by Ageary (talk | contribs) (fixed ref)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Seismic Data Analysis
Seismic-data-analysis.jpg
Series Investigations in Geophysics
Author Öz Yilmaz
DOI http://dx.doi.org/10.1190/1.9781560801580
ISBN ISBN 978-1-56080-094-1
Store SEG Online Store


Figure 11.5-6 shows a difference section from the time-lapse data as in Figure 11.5-4 following cross-equalization. This difference section exhibits a strong amplitude anomaly at the reservoir level situated at the salt flank. Such an amplitude difference may be attributed to changes in the reservoir conditions as a result of production [1]. Because of a wide range of factors associated with acquisition and analysis of the 4-D data, in addition to the difference data volume, the individual data volumes themselves are also visualized and interpreted.

The example of cross-equalization shown in Figure 11.5-7 relate to a steam injection project. Note the differences in the time slices from the image volumes associated with the 1996 survey and 1997 survey before and after cross-equalization. The bubbles correspond to the location of the injection wells.

The 4-D seismic anomalies are characterized as differences between time-lapse 3-D data that are present after cross-equalization as exemplified by Figure 11.5-5. Calibration of these anomalies often is ambiguous, in that, they may be attributable to changes in one or more of the reservoir conditions, such as change in fluid saturation caused by water displacing oil, pore pressure change caused by injection, or a temperature change caused by steam injection [2].

Although significant progress has been made in the 4-D seismic method, its value in determining dynamic reservoir properties is just beginning to be demonstrated. The information regarding the dynamic reservoir properties much sought after by the production engineer includes changes in oil saturation, water saturation, and pore pressure. Future developments in seismically driven reservoir characterization and monitoring should contribute significantly to optimum management of oil and gas fields.

References

  1. 1.0 1.1 1.2 1.3 Rickett and Lumley, 1998, Rickett, J. and Lumley, D. E., 1998, A cross-equalization processing flow for off-the-shelf 4-D seismic data: 68th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 16–19.
  2. 2.0 2.1 Ecker, 1999, Ecker, C., Lumley, D. E., Tura, A., Kempner, W., Klosnky, L., 1999, Estimating separate steam thickness and temperature maps from 4-D seismic data: An example from San Joaquin Valley, California: 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2032–2034.

See also

External links

find literature about
Seismic reservoir monitoring
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png