# Difference between revisions of "Energy from an air-gun array"

(added page) |
(→Problem: added notation) |
||

Line 14: | Line 14: | ||

| isbn = ISBN 9781560801153 | | isbn = ISBN 9781560801153 | ||

}} | }} | ||

− | == Problem == | + | == Problem 7.7 == |

How much energy is released (approximately) by the air-gun array in Figure 7.7a when the input pressure is 2000 psi (14 MPa)? Assume that the change is adiabatic, that is, <math>\mathcal{PV}^{1.4} =</math> constant, where <math>\mathcal{P}</math>, <math>\mathcal{V}</math> are pressure and volume, that the final pressure is 2 atmospheres, and that the guns are far enough apart that they do not interact. | How much energy is released (approximately) by the air-gun array in Figure 7.7a when the input pressure is 2000 psi (14 MPa)? Assume that the change is adiabatic, that is, <math>\mathcal{PV}^{1.4} =</math> constant, where <math>\mathcal{P}</math>, <math>\mathcal{V}</math> are pressure and volume, that the final pressure is 2 atmospheres, and that the guns are far enough apart that they do not interact. | ||

## Latest revision as of 15:54, 7 November 2019

Series | Geophysical References Series |
---|---|

Title | Problems in Exploration Seismology and their Solutions |

Author | Lloyd P. Geldart and Robert E. Sheriff |

Chapter | 7 |

Pages | 221 - 252 |

DOI | http://dx.doi.org/10.1190/1.9781560801733 |

ISBN | ISBN 9781560801153 |

Store | SEG Online Store |

## Contents

## Problem 7.7

How much energy is released (approximately) by the air-gun array in Figure 7.7a when the input pressure is 2000 psi (14 MPa)? Assume that the change is adiabatic, that is, constant, where , are pressure and volume, that the final pressure is 2 atmospheres, and that the guns are far enough apart that they do not interact.

### Background

An air gun consists of two chambers, both filled with air at high pressure. The two chambers are connected by a shuttle that is held in a closed position. When the restraining force is suddenly diminished the shuttle moves, allowing the air to vent into the water, creating the effect of an explosion. The energy release depends upon the change in air pressure and the volume of the chambers that discharge air into the water; the latter is usually given in cubic inches.

### Solution

Energy released work done by expanding gas . For an adiabatic change, or . Thus,

We have

Since ,

Finally, J.

## Continue reading

Previous section | Next section |
---|---|

Sosie method | Dominant frequencies of marine sources |

Previous chapter | Next chapter |

Characteristics of seismic events | Reflection field methods |

## Also in this chapter

- Radiolocation errors because of velocity variations
- Effect of station angle on location errors
- Transit satellite navigation
- Effective penetration of profiler sources
- Directivity of linear sources
- Sosie method
- Energy from an air-gun array
- Dominant frequencies of marine sources
- Effect of coil inductance on geophone equation
- Streamer feathering due to cross-currents
- Filtering effect of geophones and amplifiers
- Filter effects on waveshape
- Effect of filtering on event picking
- Binary numbers