Difference between revisions of "Dictionary:Nonhyperbolic normal-moveout (velocity) analysis/es"
(Created page with "El uso del término de 4<sup>th</sup> orden dado por una expansión de Taylor corrige el indeseable efecto de "palo de hockey".") |
|||
Line 8: | Line 8: | ||
donde ''t''<sub>0</sub> el tiempo de viaje con desplazamiento cero, ''x''es desplazamiento, ''V'' es velocidad de onda P, y <math>\eta=\frac{\varepsilon-\delta}{1+2\delta} </math> donde <math>\varepsilon</math> y <math>\delta</math> son los parámetros anisotrópicos de Thomsen ([[Special:MyLanguage/Dictionary:Thomsen_anisotropic_parameters_(tom’_s∂n)|''Thomsen anisotropic parameters'']]) (q.v.). | donde ''t''<sub>0</sub> el tiempo de viaje con desplazamiento cero, ''x''es desplazamiento, ''V'' es velocidad de onda P, y <math>\eta=\frac{\varepsilon-\delta}{1+2\delta} </math> donde <math>\varepsilon</math> y <math>\delta</math> son los parámetros anisotrópicos de Thomsen ([[Special:MyLanguage/Dictionary:Thomsen_anisotropic_parameters_(tom’_s∂n)|''Thomsen anisotropic parameters'']]) (q.v.). | ||
− | + | El uso del término de 4<sup>th</sup> orden dado por una expansión de Taylor corrige el indeseable efecto de "palo de hockey". |
Revision as of 22:14, 24 March 2018
Análisis que permite cambios típicos en velocidades verticales y anisotropía cuando se usan desplazamientos largos, es decir, donde el desplazamiento excede la profundidad del reflector. En este caso, a menudo la ecuación hiperbólica para reflexión se puede expresar como
donde t0 el tiempo de viaje con desplazamiento cero, xes desplazamiento, V es velocidad de onda P, y donde y son los parámetros anisotrópicos de Thomsen (Thomsen anisotropic parameters) (q.v.).
El uso del término de 4th orden dado por una expansión de Taylor corrige el indeseable efecto de "palo de hockey".