Difference between revisions of "Dictionary:Instantaneous bandwidth/es"

From SEG Wiki
Jump to: navigation, search
(Created page with "La frecuencia correspondiente al centroide del espectro de potencia de una ondícula, puede ser calculada de la siguiente manera: <center><math>\omega_c = \frac{\displaystyle...")
(Created page with "La varianza con respecto a la frecuencia del centroide, viene dada por: <center><math>\omega_v^2 = \frac{\displaystyle \int_{0}^{\infty} (\omega - \omega_c)^2 P(\omega)d\omega...")
Line 15: Line 15:
 
<center><math>\omega_c = \frac{\displaystyle \int_{0}^{\infty} \omega P(\omega)d\omega}{\displaystyle \int_{0}^{\infty} P(\omega)d\omega} </math></center>
 
<center><math>\omega_c = \frac{\displaystyle \int_{0}^{\infty} \omega P(\omega)d\omega}{\displaystyle \int_{0}^{\infty} P(\omega)d\omega} </math></center>
  
The variance with respect to the centroid frequency is given by:
+
La varianza con respecto a la frecuencia del centroide, viene dada por:
 
<center><math>\omega_v^2 = \frac{\displaystyle \int_{0}^{\infty} (\omega - \omega_c)^2 P(\omega)d\omega}{\displaystyle \int_{0}^{\infty} P(\omega)d\omega}</math></center>
 
<center><math>\omega_v^2 = \frac{\displaystyle \int_{0}^{\infty} (\omega - \omega_c)^2 P(\omega)d\omega}{\displaystyle \int_{0}^{\infty} P(\omega)d\omega}</math></center>
  

Revision as of 10:25, 13 April 2019

Other languages:
English • ‎español


El ancho de banda instantáneo es un atributo sísmico. Existen dos métodos para el cálculo del ancho de banda instantáneo, el de Barnes (1992) y el de O'Doherty (1992).

La ecuación de Barnes luce de la siguiente manera:

Donde es la traza envolvente. Esta ecuación midel el valor absoluto del cambio de magnitud de la amplitud en la traza envolvente.

La ecuación de O'Doherty incluye el centroide del espectro de potencia de una ondícula , la varianza , y la frecuencia RMS .

La frecuencia correspondiente al centroide del espectro de potencia de una ondícula, puede ser calculada de la siguiente manera:

La varianza con respecto a la frecuencia del centroide, viene dada por:

The RMS frequency, also known as the second moment of the power spectrum, can be calculated by:


By expanding the variance equation we can show that:

Now we can examine these statistical measurements of the power spectrum in the form of useful attributes. These computations represent the statistics of the seismic wavelet computed over some time window. Therefore, they are more closely associated with the time smoothed instantaneous attributes. The are computed and displayed continuously for all the data samples. By definition , the centroid frequency is the mean frequency where an equal amount of energy exists on either side of this frequency. The variance with respect to the mean frequency indicates the width of the power spectral density distribution over a band of frequencies, therefore we can use it as an indication of the spectral bandwidth. [1]

Instantaneous bandwidth is a statistical measure of the seismic wavelet, but it relates to various physical conditions:

  • Represents seismic data bandwidth sample by sample. It is one of the high-resolution character correlators.
  • Shows overall effects of absorption and seismic character changes.


References

  1. Taner, Turhan (1992), Attributes Revisited, Rock Solid Images Houston, Texas (published 2000)