Difference between revisions of "Dictionary:Gaussian distribution"

From SEG Wiki
Jump to: navigation, search
(Prepared the page for translation)
(Marked this version for translation)
 
Line 4: Line 4:
 
{{#category_index:G|Gaussian distribution}}
 
{{#category_index:G|Gaussian distribution}}
 
<translate>
 
<translate>
 +
<!--T:1-->
 
(gaus' &#x0113; &#x2202;n) <b>A normal</b> or <b>bell-shaped distribution</b>. A set of values so distributed about a mean value ''m'' that the probability <math>\varepsilon(\Delta a)</math> of a value lying within a small interval <math>\Delta a</math> centered at the point ''a'' is  
 
(gaus' &#x0113; &#x2202;n) <b>A normal</b> or <b>bell-shaped distribution</b>. A set of values so distributed about a mean value ''m'' that the probability <math>\varepsilon(\Delta a)</math> of a value lying within a small interval <math>\Delta a</math> centered at the point ''a'' is  
  
 +
<!--T:2-->
 
<center><math>\varepsilon (\Delta a) = \text{erf} (\Delta a)=\frac{e^{-\left(a-m\right)^2}\Delta a}{\sigma \sqrt{2\pi}}</math>,</center>
 
<center><math>\varepsilon (\Delta a) = \text{erf} (\Delta a)=\frac{e^{-\left(a-m\right)^2}\Delta a}{\sigma \sqrt{2\pi}}</math>,</center>
  
 +
<!--T:3-->
 
where <math>\sigma </math> is the standard error and <math>\varepsilon(\Delta a)</math> is called the <b>error function</b>.
 
where <math>\sigma </math> is the standard error and <math>\varepsilon(\Delta a)</math> is called the <b>error function</b>.
 
</translate>
 
</translate>

Latest revision as of 03:02, 29 January 2018

Other languages:
English • ‎español • ‎中文


(gaus' ē ∂n) A normal or bell-shaped distribution. A set of values so distributed about a mean value m that the probability of a value lying within a small interval centered at the point a is

,

where is the standard error and is called the error function.