Difference between revisions of "Dictionary:Fourier analysis/es"

From SEG Wiki
Jump to: navigation, search
(Created page with "(floor’ qā,) Es la representación analítica de una forma de onda en una suma pesada de funciones sinusoidales. Determinando la amplitud y fase de ondas c...")
(Created page with ".")
Line 4: Line 4:
 
(floor’ qā,) Es la representación analítica de una forma de onda en una suma pesada de funciones sinusoidales. Determinando la amplitud y fase de ondas coseno (o seno) de diferentes frecuencias en las cuales la forma de onda puede ser descompuesta. El análisis de Fourier puede ser pensado como un sub-conjunto de "[[Special:MyLanguage/Dictionary:Fourier Transform|Transformada de Fourier"]]  (q.v.). Ver [[Special:MyLanguage/Dictionary:Fig_F-18|Fig-18]]. Opuesto a la Síntesis de Fourier. Llamada así por el matemático francés Jean Baptiste Joseph Fourier (1768–1830).
 
(floor’ qā,) Es la representación analítica de una forma de onda en una suma pesada de funciones sinusoidales. Determinando la amplitud y fase de ondas coseno (o seno) de diferentes frecuencias en las cuales la forma de onda puede ser descompuesta. El análisis de Fourier puede ser pensado como un sub-conjunto de "[[Special:MyLanguage/Dictionary:Fourier Transform|Transformada de Fourier"]]  (q.v.). Ver [[Special:MyLanguage/Dictionary:Fig_F-18|Fig-18]]. Opuesto a la Síntesis de Fourier. Llamada así por el matemático francés Jean Baptiste Joseph Fourier (1768–1830).
  
[[File:Segf18.jpg|center|thumb|600px|FIG. F-18. (<b>a</b>) <b>Fourier analysis</b> involves finding the amplitude of frequency components for a waveform. The frequency-domain representation or spectrum ''G''(''f'') of a discrete time function ''g''<sub>''t''</sub> (waveform, seismic record trace, etc.) can be decomposed into a series of sinusoids by any of the following equivalent equations: <center><math>\begin{align}
+
.
g_{t} & =a_{0}/2+\sum [a_{n}\cos (2\pi f_{n}t)+b_{n}\cos (2\pi ft)] \\
 
& =c_{0}/2+\sum c_{n}\cos (2\pi f_{n}t-\gamma_{n})=\sum \alpha_{n} exp[j2\pi f_{n}t]
 
\end{align}</math></center>
 
Where <center><math>\begin{align}
 
a_{n} &=(2/T)\sum g_{i}\cos (2\pi f_{i}t),\\  b_{n} &=(2/T)\sum g_{i}\sin (2\pi f_{i}t), \\
 
c_{n} &=(2/T)\sum g_{i}\cos (2\pi f_{i}t-\gamma _{i}),\\  \gamma _{n}&=0,\; \gamma _{n}=\tan ^{-1}(b_{n}/a_{n}), \\ & n>0,\; \alpha =(2/T)\sum g_{i} exp[j2\pi f_{i}t]
 
\end{align}</math></center>
 
If <math>g(t)</math> is a continuous waveform, the sum signs become integrals.
 
(<b>b</b>) <b>Fourier synthesis</b> involves superimposing the components to reconstitute the waveform. For an antisymmetric sawtooth waveform, the first four components are:
 
<center><math>\sin x; -(1/2)\sin 2x; (1/3)\sin 3x; -(1/4)\sin 4x</math></center>.
 
For a Fourier transform the limits are <math>0</math> and <math>\pm \infty,</math> and <math>G(f)</math> and <math>g(t)</math> constitute a Fourier-transform pair; see Figure [[Special:MyLanguage/Dictionary:Fig_F-19|F-19]].]]
 
  
  

Revision as of 08:55, 14 June 2017

Other languages:
English • ‎español


(floor’ qā,) Es la representación analítica de una forma de onda en una suma pesada de funciones sinusoidales. Determinando la amplitud y fase de ondas coseno (o seno) de diferentes frecuencias en las cuales la forma de onda puede ser descompuesta. El análisis de Fourier puede ser pensado como un sub-conjunto de "Transformada de Fourier" (q.v.). Ver Fig-18. Opuesto a la Síntesis de Fourier. Llamada así por el matemático francés Jean Baptiste Joseph Fourier (1768–1830).

.


External links

find literature about
Fourier analysis/es
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png