Difference between revisions of "Dictionary:Dar Zarrouk"

From SEG Wiki
Jump to: navigation, search
(fixed math in text, added reference, removed html)
(Marked this version for translation)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{lowercase}}{{#category_index:D|dar Zarrouk}}
+
<languages/>
(dar zar ruk') The name given by Maillet to resistivity parameters or curves that deal with layered anisotropic materials. The '''dar Zarrouk variable''' is the '''transversal unit resistance''' (<math>\rho_{T}</math>), the depth integral of the transverse resistivity perpendicular to the strata; the '''dar Zarrouk function''' is the [[Dictionary:longitudinal unit conductance|longitudinal unit conductance]] (<math>\frac{1}{\rho_{L}}</math>), the depth integral of the conductivity parallel to the strata; and the '''dar Zarrouk curve''' is a plot of the mean resistivity (<math>\rho_{T}</math>) of the formation down to the depth ''z'', plotted versus the anisotropy coefficient times <math>z (\rho_{T}\rho_{L})^{1/2}</math>:  
+
<translate>
 +
</translate>
 +
{{lowercase}}
 +
<translate><!--T:1-->
 +
{{#category_index:D|dar Zarrouk}}
 +
(dar zar ruk') The name given by Maillet to resistivity parameters or curves that deal with layered anisotropic materials. The '''dar Zarrouk variable''' is the '''transversal unit resistance''' (<math>\rho_{T}</math>), the depth integral of the transverse resistivity perpendicular to the strata; the '''dar Zarrouk function''' is the [[Special:MyLanguage/Dictionary:longitudinal unit conductance|longitudinal unit conductance]] (<math>\frac{1}{\rho_{L}}</math>), the depth integral of the conductivity parallel to the strata; and the '''dar Zarrouk curve''' is a plot of the mean resistivity (<math>\rho_{T}</math>) of the formation down to the depth ''z'', plotted versus the anisotropy coefficient times <math>z (\rho_{T}\rho_{L})^{1/2}</math>:  
  
<center>&#x03C1;<sub>''T''</sub>=&#x03A3;&#x03C1;<sub>''i''</sub>''z''<sub>''i''</sub>&#x0020;and&#x0020;1/&#x03C1;<sub>''L''</sub>=&#x03A3;''z''<sub>''i''</sub>/&#x03C1;<sub>''i''</sub>,</center>
+
<!--T:2-->
 +
<center><math>\rho _{T} = \sum \rho _{i} z_{i} \ \text{and} \ \frac{1}{\rho_{L}} = \sum \frac{z_{i}}{\rho_{i}}</math></center>
  
 +
<!--T:3-->
 
where <math>z_{i}</math> are layer thicknesses.<ref>Maillet, R., 1947, The fundamental equations of electrical prospecting: Geophysics, 12, 529–556.</ref>
 
where <math>z_{i}</math> are layer thicknesses.<ref>Maillet, R., 1947, The fundamental equations of electrical prospecting: Geophysics, 12, 529–556.</ref>
  
== References ==
+
 
 +
== References == <!--T:4-->
 +
 
 +
</translate>
 
{{reflist}}
 
{{reflist}}
 
+
<translate>
[[Category:Pages with unformatted equations]]
+
</translate>

Latest revision as of 07:23, 14 February 2017

Other languages:
English • ‎español • ‎中文


(dar zar ruk') The name given by Maillet to resistivity parameters or curves that deal with layered anisotropic materials. The dar Zarrouk variable is the transversal unit resistance (), the depth integral of the transverse resistivity perpendicular to the strata; the dar Zarrouk function is the longitudinal unit conductance (), the depth integral of the conductivity parallel to the strata; and the dar Zarrouk curve is a plot of the mean resistivity () of the formation down to the depth z, plotted versus the anisotropy coefficient times :

where are layer thicknesses.[1]


References

  1. Maillet, R., 1947, The fundamental equations of electrical prospecting: Geophysics, 12, 529–556.