# Difference between revisions of "Dictionary:DMO (dip moveout) processing"

(Prepared the page for translation) |
(Marked this version for translation) |
||

Line 5: | Line 5: | ||

<translate> | <translate> | ||

+ | <!--T:1--> | ||

A seismic processing operation to correct for the fact that, for dipping reflections, the component traces of a CMP gather do not involve a common reflecting point. | A seismic processing operation to correct for the fact that, for dipping reflections, the component traces of a CMP gather do not involve a common reflecting point. | ||

+ | <!--T:2--> | ||

Dip-moveout processing creates apparent common-reflection-point gathers by a convolution applied to adjacent common-midpoint gathers, with the feature that the moveout with offset for reflections from a dipping bed no longer depend on the dip angle (see Figure [[Special:MyLanguage/Dictionary:Fig_C-9|C-9]]b). | Dip-moveout processing creates apparent common-reflection-point gathers by a convolution applied to adjacent common-midpoint gathers, with the feature that the moveout with offset for reflections from a dipping bed no longer depend on the dip angle (see Figure [[Special:MyLanguage/Dictionary:Fig_C-9|C-9]]b). | ||

+ | <!--T:3--> | ||

[[File:Segc9.jpg|left|thumb|300px|FIG. C-9. <b>Common-midpoint method</b>. (<b>a</b>) In six-fold shooting with 24-geophone groups and the source point moved two group intervals between successive shots; the same subsurface is sampled six times (A⇒23, B⇒21, C⇒19, D⇒17, E⇒15, F⇒13). (<b>b</b>) A reflector that dips does not have a common reflecting point and common-midpoint stacking results in reflection-point <b>smearing</b> unless ''[[Special:MyLanguage/Dictionary:DMO_(dip_moveout)_processing|DMO]]'' (q.v.) processing or migration precedes stacking. (<b>c</b>) To achieve a <b>common-reflection point</b> in the case of dip requires unequal surface spacing. (<b>d</b>) A <b>common-source gather</b> is a collection of traces having the same source; (<b>e</b>) <b>common-receiver gather</b>; (<b>f</b>) <b>common-offset gather</b>. (<b>g</b>) If there are horizontal velocity variations, prestack migration is required to form a <b>common-imaging-point gather</b>. Compare Figure [[Special:MyLanguage/Dictionary:Fig_C-13|C-13]]. All diagrams assume constant velocity.]] | [[File:Segc9.jpg|left|thumb|300px|FIG. C-9. <b>Common-midpoint method</b>. (<b>a</b>) In six-fold shooting with 24-geophone groups and the source point moved two group intervals between successive shots; the same subsurface is sampled six times (A⇒23, B⇒21, C⇒19, D⇒17, E⇒15, F⇒13). (<b>b</b>) A reflector that dips does not have a common reflecting point and common-midpoint stacking results in reflection-point <b>smearing</b> unless ''[[Special:MyLanguage/Dictionary:DMO_(dip_moveout)_processing|DMO]]'' (q.v.) processing or migration precedes stacking. (<b>c</b>) To achieve a <b>common-reflection point</b> in the case of dip requires unequal surface spacing. (<b>d</b>) A <b>common-source gather</b> is a collection of traces having the same source; (<b>e</b>) <b>common-receiver gather</b>; (<b>f</b>) <b>common-offset gather</b>. (<b>g</b>) If there are horizontal velocity variations, prestack migration is required to form a <b>common-imaging-point gather</b>. Compare Figure [[Special:MyLanguage/Dictionary:Fig_C-13|C-13]]. All diagrams assume constant velocity.]] | ||

DMO effectively corrects for the reflection-point smear that results when dipping reflectors are stacked by the CMP method. After DMO is applied, events with various dips stack with the same velocity. | DMO effectively corrects for the reflection-point smear that results when dipping reflectors are stacked by the CMP method. After DMO is applied, events with various dips stack with the same velocity. | ||

+ | <!--T:4--> | ||

DMO stands for dip moveout, but it is different from the classical dip moveout that is simply the effect of dip on arrival times. | DMO stands for dip moveout, but it is different from the classical dip moveout that is simply the effect of dip on arrival times. | ||

+ | <!--T:5--> | ||

DMO can be performed in a number of ways, including prestack partial migration<ref>{{cite journal|last=Yilmaz|first=O|last2=Claerbout| first2=J. F|title=Partial prestack migration|journal=Geophysics|year=1980|volume=45|issue=12|pages=1753–1779|doi=10.1190/1.1441064}}</ref>, time-domain, finite-difference methods (<b>offset continuation</b>)<ref>{{cite journal |last=Bolondi |first=G |last2=Loinger |first2=E |last3=Rocca |first3=F |date=1982 |title=Offset continuation of seismic sections|journal=Geophysical Prospecting |volume=30 |issue=6 |pages=813–828 |doi=10.1111/j.1365-2478.1982.tb01340.x}}</ref>, Fourier-domain implementation<ref>{{cite journal |last=Hale |first=Dave |date=1984 |title=Dip‐moveout by Fourier transform|journal=Geophysics |volume=49 |issue=6 |pages=741-757 |doi=10.1190/1.1441702}}</ref>, integral (Kirchhoff) methods<ref>{{cite journal |last=Deregowski |first=S. M. |last2=Hosken |first2=W. J. |date=1985 |title=tutorial: Migration strategy |journal=Geophysical Prospecting |volume=33 |issue=1 |pages=1-33 |doi=10.1111/j.1365-2478.1985.tb00419.x}}</ref>. | DMO can be performed in a number of ways, including prestack partial migration<ref>{{cite journal|last=Yilmaz|first=O|last2=Claerbout| first2=J. F|title=Partial prestack migration|journal=Geophysics|year=1980|volume=45|issue=12|pages=1753–1779|doi=10.1190/1.1441064}}</ref>, time-domain, finite-difference methods (<b>offset continuation</b>)<ref>{{cite journal |last=Bolondi |first=G |last2=Loinger |first2=E |last3=Rocca |first3=F |date=1982 |title=Offset continuation of seismic sections|journal=Geophysical Prospecting |volume=30 |issue=6 |pages=813–828 |doi=10.1111/j.1365-2478.1982.tb01340.x}}</ref>, Fourier-domain implementation<ref>{{cite journal |last=Hale |first=Dave |date=1984 |title=Dip‐moveout by Fourier transform|journal=Geophysics |volume=49 |issue=6 |pages=741-757 |doi=10.1190/1.1441702}}</ref>, integral (Kirchhoff) methods<ref>{{cite journal |last=Deregowski |first=S. M. |last2=Hosken |first2=W. J. |date=1985 |title=tutorial: Migration strategy |journal=Geophysical Prospecting |volume=33 |issue=1 |pages=1-33 |doi=10.1111/j.1365-2478.1985.tb00419.x}}</ref>. | ||

+ | <!--T:6--> | ||

[[File:Segd20.jpg|thumb|right|300px|FIG. D-20. <b>DMO. (a)</b> Depth section showing the updip movement of the reflecting point for an offset geophone for constant velocity; <math>\Delta=(h^{2}/D)cos\xi sin\xi</math>, where <math>\xi</math>; is the dip (Levin, 1971). To avoid reflection point smearing, an offset trace should be gathered with the updip zero-offset trace at a distance <math>G=(-h^{2}/D)sin\xi</math>, but such a gather is not hyperbolic; the DMO correction makes this gather hyperbolic. <b>(b)</b> A diffraction in location-offset space, a <b>Cheops pyramid</b>, is not a hyperboloid. <b>(c)</b> Applying NMO changes the Cheops pyramid into a saddle-shaped surface. <b>(d)</b> Applying DMO along with NMO yields data that can be stacked without reflection-point smear. <b>(e)</b> NMO corrects for the time delay on an offset trace assuming horizontality, DMO moves the data to the correct zero-offset trace for a dipping reflection, and migration further moves it to its subsurface location.<ref>{{cite journal |last=Deregowski |first=S. M. |date=1986 |title=What is DMO |journal=First Break |volume=4 |issue=7 |pages=7–24 |doi=10.3997/1365-2397.1986014}}</ref>]] | [[File:Segd20.jpg|thumb|right|300px|FIG. D-20. <b>DMO. (a)</b> Depth section showing the updip movement of the reflecting point for an offset geophone for constant velocity; <math>\Delta=(h^{2}/D)cos\xi sin\xi</math>, where <math>\xi</math>; is the dip (Levin, 1971). To avoid reflection point smearing, an offset trace should be gathered with the updip zero-offset trace at a distance <math>G=(-h^{2}/D)sin\xi</math>, but such a gather is not hyperbolic; the DMO correction makes this gather hyperbolic. <b>(b)</b> A diffraction in location-offset space, a <b>Cheops pyramid</b>, is not a hyperboloid. <b>(c)</b> Applying NMO changes the Cheops pyramid into a saddle-shaped surface. <b>(d)</b> Applying DMO along with NMO yields data that can be stacked without reflection-point smear. <b>(e)</b> NMO corrects for the time delay on an offset trace assuming horizontality, DMO moves the data to the correct zero-offset trace for a dipping reflection, and migration further moves it to its subsurface location.<ref>{{cite journal |last=Deregowski |first=S. M. |date=1986 |title=What is DMO |journal=First Break |volume=4 |issue=7 |pages=7–24 |doi=10.3997/1365-2397.1986014}}</ref>]] | ||

+ | <!--T:7--> | ||

Velocity-dependent DMO is usually applied after velocity-dependent NMO. <b>Gardner’s DMO</b> <ref>{{cite journal |last=Forel |first=David |last2=Gardner |first2=Gerald H. F. |date=1988 |title=A three‐dimensional perspective on two‐dimensional dip moveout |journal=Geophysics |volume=53 |issue=5 |pages=604-610 |doi=10.1190/1.1442495}}</ref> applies velocity-independent DMO prior to velocity-dependent NMO. See Figure [[Special:MyLanguage/Dictionary:Fig_D-20|D-20]] and [[Special:MyLanguage/Dictionary:double-square-root_equation|''double square-root equation'']]. | Velocity-dependent DMO is usually applied after velocity-dependent NMO. <b>Gardner’s DMO</b> <ref>{{cite journal |last=Forel |first=David |last2=Gardner |first2=Gerald H. F. |date=1988 |title=A three‐dimensional perspective on two‐dimensional dip moveout |journal=Geophysics |volume=53 |issue=5 |pages=604-610 |doi=10.1190/1.1442495}}</ref> applies velocity-independent DMO prior to velocity-dependent NMO. See Figure [[Special:MyLanguage/Dictionary:Fig_D-20|D-20]] and [[Special:MyLanguage/Dictionary:double-square-root_equation|''double square-root equation'']]. | ||

− | == References == | + | == References == <!--T:8--> |

</translate> | </translate> | ||

Line 29: | Line 36: | ||

− | == External links == | + | == External links == <!--T:9--> |

</translate> | </translate> |

## Latest revision as of 20:46, 4 May 2017

A seismic processing operation to correct for the fact that, for dipping reflections, the component traces of a CMP gather do not involve a common reflecting point.

Dip-moveout processing creates apparent common-reflection-point gathers by a convolution applied to adjacent common-midpoint gathers, with the feature that the moveout with offset for reflections from a dipping bed no longer depend on the dip angle (see Figure C-9b).

DMO effectively corrects for the reflection-point smear that results when dipping reflectors are stacked by the CMP method. After DMO is applied, events with various dips stack with the same velocity.

DMO stands for dip moveout, but it is different from the classical dip moveout that is simply the effect of dip on arrival times.

DMO can be performed in a number of ways, including prestack partial migration^{[1]}, time-domain, finite-difference methods (**offset continuation**)^{[2]}, Fourier-domain implementation^{[3]}, integral (Kirchhoff) methods^{[4]}.

Velocity-dependent DMO is usually applied after velocity-dependent NMO. **Gardner’s DMO** ^{[6]} applies velocity-independent DMO prior to velocity-dependent NMO. See Figure D-20 and *double square-root equation*.

## References

- ↑ Yilmaz, O; Claerbout, J. F (1980). "Partial prestack migration".
*Geophysics***45**(12): 1753–1779. doi:10.1190/1.1441064. - ↑ Bolondi, G; Loinger, E; Rocca, F (1982). "Offset continuation of seismic sections".
*Geophysical Prospecting***30**(6): 813–828. doi:10.1111/j.1365-2478.1982.tb01340.x. - ↑ Hale, Dave (1984). "Dip‐moveout by Fourier transform".
*Geophysics***49**(6): 741-757. doi:10.1190/1.1441702. - ↑ Deregowski, S. M.; Hosken, W. J. (1985). "tutorial: Migration strategy".
*Geophysical Prospecting***33**(1): 1-33. doi:10.1111/j.1365-2478.1985.tb00419.x. - ↑ Deregowski, S. M. (1986). "What is DMO".
*First Break***4**(7): 7–24. doi:10.3997/1365-2397.1986014. - ↑ Forel, David; Gardner, Gerald H. F. (1988). "A three‐dimensional perspective on two‐dimensional dip moveout".
*Geophysics***53**(5): 604-610. doi:10.1190/1.1442495.