Difference between revisions of "Dictionary:Convolution theorem"
Line 3: | Line 3: | ||
== Integral definition == | == Integral definition == | ||
− | The process of convolution is defined | + | The process of convolution of two functions <math> f(t)</math> and <math> g(t) </math> is defined in one dimension, as |
− | <center> <math> f \star g (t) = \int_{-\infty}^{\infty}f(\tau) g(t - \tau) \; d \tau. </math> </center> | + | <center> <math> (f \star g )(t) = \int_{-\infty}^{\infty}f(\tau) g(t - \tau) \; d \tau. </math> </center> |
== Fourier domain equivalent == | == Fourier domain equivalent == | ||
− | Replacing <math> f(\tau) </math> and <math> g(t - \tau) </math> by their [[Fourier transform|Fourier domain]] representations | + | Replacing <math> f(\tau) </math> and <math> g(t - \tau) </math> by their [[Dictionary:Fourier transform|Fourier domain]] representations |
<center><math> f(\tau) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega \tau } \; d \omega </math> </center> | <center><math> f(\tau) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega \tau } \; d \omega </math> </center> | ||
Line 18: | Line 18: | ||
<center><math> g(t-\tau) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\Omega) e^{-i \Omega (t - \tau) } \; d \Omega </math> </center> | <center><math> g(t-\tau) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\Omega) e^{-i \Omega (t - \tau) } \; d \Omega </math> </center> | ||
− | + | yields | |
− | <center> <math> f \star g (t) = \int_{-\infty}^{\infty} \left( \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega \tau } \; d \omega \right) \left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\Omega) e^{-i \Omega (t - \tau) } \; d \Omega \right) \; d \tau. </math> </center> | + | <center> <math> (f \star g)(t) = \int_{-\infty}^{\infty} \left( \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) e^{-i \omega \tau } \; d \omega \right) \left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(\Omega) e^{-i \Omega (t - \tau) } \; d \Omega \right) \; d \tau. </math> </center> |
Rearranging the order of integrations | Rearranging the order of integrations | ||
− | <center> <math> f \star g (t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \; d \omega \int_{-\infty}^{\infty} \; d \Omega \int_{-\infty}^{\infty} | + | <center> <math> (f \star g) (t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \; d \omega \int_{-\infty}^{\infty} \; d \Omega F(\omega) G(\Omega) e^{-i \Omega t} \left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i (\omega -\Omega) \tau } \; d \tau \right]. </math> </center> |
+ | |||
+ | Recognizing the factor in <math> [ ... ] </math> as the frequency domain representation of the [[Dirac delta function]] | ||
+ | |||
+ | |||
+ | <center> <math> \delta ( \omega - \Omega ) = \delta( \Omega - \omega ) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i (\omega -\Omega) \tau } \; d \tau . </math> </center> | ||
+ | |||
+ | Permitting the following to be written | ||
+ | |||
+ | <center> <math> (f \star g) (t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} \; d \omega \int_{-\infty}^{\infty} \; d \Omega F(\omega) G(\Omega) e^{-i \Omega t} \delta(\Omega - \omega ). </math> </center> | ||
+ | |||
+ | The <math> \Omega </math> integral may be performed, exploiting the [[sifting property]] of the delta function to yield the tradition representation of the equivalence of | ||
+ | frequency domain multiplication and convolution | ||
+ | |||
+ | |||
+ | <center> <math> (f \star g) (t) = \frac{1}{2 \pi} \int_{-\infty}^{\infty} F(\omega) G(\omega) e^{-i \Omega t} \; d \omega . </math> </center> |
Revision as of 13:08, 5 December 2016
The Fourier transform of the convolution of two functions is equal to the product of their individual transforms (or multiplying their amplitude spectra and summing their phase spectra). See Figures F-20 and F-22.
Integral definition
The process of convolution of two functions and is defined in one dimension, as
Fourier domain equivalent
Replacing and by their Fourier domain representations
and
yields
Rearranging the order of integrations
Recognizing the factor in as the frequency domain representation of the Dirac delta function
Permitting the following to be written
The integral may be performed, exploiting the sifting property of the delta function to yield the tradition representation of the equivalence of frequency domain multiplication and convolution