Sobretiempo por distancia de onda convertida

ADVERTISEMENT
From SEG Wiki
Revision as of 16:39, 12 August 2021 by Covarj (talk | contribs) (Created page with "</math> </center> ecuación (5.2.5), Thomsen (2002).")
Jump to: navigation, search
Other languages:
English • ‎español


Con las secciones de trazas comunes de la onda C, el sobretiempo por distancia no será simétrico y la expresión de tiempo de llegada es [1]


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle t_C^2 = t_{CO}^2 \left[ 1 + C_1 \left( \frac{x}{t_{CO} V_{CNMO} }\right) + \frac{x^2}{t_{CO}^2 V_{CNMO}^2 } + C_3 \left( \frac{x}{t_{CO} V_{CNMO} }\right)^3 - \frac{ C_4 \left( \displaystyle \frac{x}{t_{CO} V_{CNMO}}\right)^4 }{ 1 + C_5 \left( \displaystyle \frac{x}{t_{CO} V_{CNMO}} \right)^2 } \right] . }

ecuación (5.2.5), Thomsen (2002).

The non-hyperbolic moveout coefficent tends to be small and may be ignored for large offsets. Nonhyperbolic moveout parameter tends to be positive.

The extra coefficient is defined by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle C_5 = \frac{C_4}{\left( 1 - \displaystyle \frac{V_{CNMO}^2 }{V_{P90}^2 } \right) } \qquad \mbox{where} \qquad V_{P90} = V_{PNMO} ( 1 + 2 \eta ) }


Thus, the moveout equation involves odd as well as even powers of x (see Thomsen, 2002: 5;1-2).


References

  1. Thomsen, L. (2002), Understanding seismic anisotropy in exploration and exploitation, 2002 Distinguished Instructor Short Course, Distinguished Instructor Series, No. 5, Society of Exploration Geophysicists