Difference between revisions of "Dictionary:Binomial expansion"

From SEG Wiki
Jump to: navigation, search
(Prepared the page for translation)
(Marked this version for translation)
 
Line 3: Line 3:
 
</translate>
 
</translate>
 
{{lowercase}}
 
{{lowercase}}
<translate>{{#category_index:B|binomial expansion}}
+
<translate><!--T:1-->
 +
{{#category_index:B|binomial expansion}}
 
(b&#x012B;, n&#x014D;m&#x2019; &#x0113; &#x2202;l)  
 
(b&#x012B;, n&#x014D;m&#x2019; &#x0113; &#x2202;l)  
  
 +
<!--T:2-->
 
If <math>\left|y\right| <\left|x\right|</math>,  
 
If <math>\left|y\right| <\left|x\right|</math>,  
  
 +
<!--T:3-->
 
<center><math> (x\;\pm\; y)^n=x^n \;\pm \;\frac{n}{1!}x^{n-1}y\;+\; \frac{n(n-1)}{2!}x^{n-2}y^2\; \pm \;\frac{n(n-1)(n-2)}{3!}x^{n-3}{y^3}\;+\;\dots\;\pm\;(-1)^n y^n</math>.</center>
 
<center><math> (x\;\pm\; y)^n=x^n \;\pm \;\frac{n}{1!}x^{n-1}y\;+\; \frac{n(n-1)}{2!}x^{n-2}y^2\; \pm \;\frac{n(n-1)(n-2)}{3!}x^{n-3}{y^3}\;+\;\dots\;\pm\;(-1)^n y^n</math>.</center>
  
  
==External links==
+
==External links== <!--T:4-->
  
 
</translate>
 
</translate>

Latest revision as of 12:03, 24 March 2017

Other languages:
English • ‎español


(bī, nōm’ ē ∂l)

If ,

.


External links

find literature about
Binomial expansion
SEG button search.png Datapages button.png GeoScienceWorld button.png OnePetro button.png Schlumberger button.png Google button.png AGI button.png