Autocorrelation
Jump to navigation
Jump to search
![]() | |
Series | Geophysical References Series |
---|---|
Title | Problems in Exploration Seismology and their Solutions |
Author | Lloyd P. Geldart and Robert E. Sheriff |
Chapter | 9 |
Pages | 295 - 366 |
DOI | http://dx.doi.org/10.1190/1.9781560801733 |
ISBN | ISBN 9781560801153 |
Store | SEG Online Store |
Problem 9.21a
Show that the autocorrelation is given by
( )
Solution
The autocorrelation of is given by equation (9.8e):
If we equate in equation (9.21a) to in equation (9.8e), we have , so equation (9.21a) becomes
Problem 9.21b
Calculate for the right triangle shown in Figure 9.21a.
Solution
Let , , , :
Figure 9.21a shows that a displacement of gives the same result.
Continue reading
Previous section | Next section |
---|---|
Ghosting as a notch filter | Wiener (least-squares) inverse filters |
Previous chapter | Next chapter |
Reflection field methods | Geologic interpretation of reflection data |
Also in this chapter
- Fourier series
- Space-domain convolution and vibroseis acquisition
- Fourier transforms of the unit impulse and boxcar
- Extension of the sampling theorem
- Alias filters
- The convolutional model
- Water reverberation filter
- Calculating crosscorrelation and autocorrelation
- Digital calculations
- Semblance
- Convolution and correlation calculations
- Properties of minimum-phase wavelets
- Phase of composite wavelets
- Tuning and waveshape
- Making a wavelet minimum-phase
- Zero-phase filtering of a minimum-phase wavelet
- Deconvolution methods
- Calculation of inverse filters
- Inverse filter to remove ghosting and recursive filtering
- Ghosting as a notch filter
- Autocorrelation
- Wiener (least-squares) inverse filters
- Interpreting stacking velocity
- Effect of local high-velocity body
- Apparent-velocity filtering
- Complex-trace analysis
- Kirchhoff migration
- Using an upward-traveling coordinate system
- Finite-difference migration
- Effect of migration on fault interpretation
- Derivative and integral operators
- Effects of normal-moveout (NMO) removal
- Weighted least-squares